中考數(shù)學(xué)備考指導(dǎo):復(fù)習(xí)攻略和四點建議
中考數(shù)學(xué)備考指導(dǎo):復(fù)習(xí)攻略和四點建議
初中的數(shù)學(xué)是不是讓你抓破腦袋?有哪些好的數(shù)學(xué)學(xué)習(xí)方法呢?以下是小編給大家?guī)淼闹锌紨?shù)學(xué)備考指導(dǎo):復(fù)習(xí)攻略和四點建議,僅供考生參考,歡迎大家閱讀!
中考數(shù)學(xué)復(fù)習(xí)指導(dǎo):四點建議
第一,要重視數(shù)學(xué)概念的復(fù)習(xí)。概念是數(shù)學(xué)的基礎(chǔ),復(fù)習(xí)概念不僅要知其然,還要知其所以然。數(shù)學(xué)中考中會涉及到很多知識點,許多同學(xué)只注重記,而忽視了對其背景的理解,對于每個知識點,我們必須在牢記其內(nèi)容的基礎(chǔ)上知道它是怎樣得來的,又是運用到何處的,只有這樣,才能更好地運用它來解決問題。
第二,要注意課內(nèi)重視聽講,課后及時歸納整理。上復(fù)習(xí)課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,聽講要做到手到、口到、眼到、耳到、心到。課后要認真獨立完成作業(yè),勤于思考。在課后要及時對做過的試卷和練習(xí)進行歸納和整理,對于一些易錯題,可備一本錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。
第三,要適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣,提高解題能力。要想考好數(shù)學(xué),多做題目是難免的。剛開始要從基礎(chǔ)題入手,反復(fù)練習(xí)打好基礎(chǔ),再找一些提高題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。平時要總結(jié)各種常見題的基本解題思路,如:圖形運動類、圖形變換類、歸納探索類、分類討論類等。了解、熟悉、掌握這些題型的特點、規(guī)律、基本解題思路,通過一定數(shù)量題的練習(xí),然后,再總結(jié),再訓(xùn)練就可提高解題能力。
第四,考試時需要掌握一些技巧。當(dāng)試卷發(fā)下來后,應(yīng)先大致看一下題量,分配好時間,解題時若一道題用時太多還未找到思路,可暫時放過去,將會做的做完,回頭再仔細考慮。對于有若干問的解答題,在解答后面的問題時可以利用前面問題的結(jié)論,即使前面的問題沒有解答出來,只要說清這個條件的出處,也是可以運用的。另外,考試時要冷靜,如遇到不會的題目,不妨用一用自我安慰的心理,可以使心情平靜,從而發(fā)揮出自己的最好水平,當(dāng)然,安慰歸安慰,對于那些一下子做不出的題目,還是要努力思考,盡量能做出多少就做多少,一定的步驟也是有分的。
正確的學(xué)習(xí)態(tài)度和科學(xué)的學(xué)習(xí)方法是考好中學(xué)數(shù)學(xué)的兩大基石。這兩大基石的形成又離不開平時的數(shù)學(xué)學(xué)習(xí)實踐,希望大家能從現(xiàn)在開始行動起來,充分利用時間,為自己的中考歷程寫上靚麗的一筆!
中考數(shù)學(xué)備考指導(dǎo):數(shù)學(xué)復(fù)習(xí)攻略
為了學(xué)好初三數(shù)學(xué),不妨從以下幾個方面給予重視:
(一)狠抓“雙基”訓(xùn)練。
“雙基”即基礎(chǔ)知識與基本技能?;A(chǔ)知識是指數(shù)學(xué)概念、定理、法則、公式以及各種知識之間的內(nèi)在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動作,初中數(shù)學(xué)基本技能包括運算技能、畫圖技能、運用數(shù)字語言的技能、推理論證的技能等。只有扎實地掌握“雙基”,才能靈活應(yīng)用、深入探索,不斷創(chuàng)新。
(二)注意前后聯(lián)系。
初三數(shù)學(xué)是以前兩年的學(xué)習(xí)內(nèi)容為基礎(chǔ)的,可以用來復(fù)習(xí)、鞏固相關(guān)的內(nèi)容,同時新知識的學(xué)習(xí)常常由舊知識引入或要用到前面所學(xué)過的內(nèi)容,甚至是已有知識的綜合、提高與延續(xù)。因此在學(xué)習(xí)中,要注意前后知識的聯(lián)系,以便達到鞏固與提高的目的。
(三)重視歸納梳理。
初三數(shù)學(xué)各章內(nèi)容豐富、綜合性強,學(xué)習(xí)過程中要及時進行歸納梳理,以便于對知識深入理解,系統(tǒng)掌握,靈活運用。要學(xué)會從橫向、縱向兩方面歸納梳理知識。縱向主要是按照知識的來龍去脈進行總結(jié)歸納,如學(xué)完函數(shù),可按正比例函數(shù),一次函數(shù)、二次函數(shù)、反比例函數(shù)來歸納知識。橫向是平行的、相關(guān)的知識的整合,通過對比指出其區(qū)別與聯(lián)系,如學(xué)完二次函數(shù)之后,可把二次函數(shù)y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)之間的聯(lián)系進行歸納,這樣既可以鞏固新、舊知識,更可以提高綜合運用知識的能力,收到事半功倍的效果。
(四)掌握基本模型,找出本質(zhì)屬性。
中學(xué)的“數(shù)學(xué)模型”常常是指反映數(shù)學(xué)知識規(guī)律的結(jié)論和基本幾何圖形。初中代數(shù)中,運算法則、性質(zhì)、公式、方程、函數(shù)解析式等均是代數(shù)的模型;平面幾何中,各類知識中的基本圖形均是幾何模型。通過對這些基本模型的研究,能夠更好地掌握知識的本質(zhì)屬性,溝通知識間的聯(lián)系。重要的公式、定理是知識系統(tǒng)的主干,我們不僅要知其內(nèi)容,還應(yīng)該搞清其來龍去脈,理解其本質(zhì)。如一元二次方程的求根公式的推導(dǎo),不僅體現(xiàn)方法,而且由此公式可得出兩根與系數(shù)的關(guān)系,還可類似地推出二次函數(shù)的頂點坐標公式,所以一定要掌握推導(dǎo)過程。再如,相交弦定理、切割線定理、割線定理、切線長定理盡管形式上不盡相同,但是它們之間都有著某種內(nèi)在聯(lián)系。
聯(lián)系1:由兩條弦的交點運動及割線的運動將四條定理結(jié)論統(tǒng)一到PA·PB=PC·PD上來;
聯(lián)系2:結(jié)論形式上的統(tǒng)一:PA·PB=22OPR-(O為圓心,P為兩弦交點)。
所以也把相交弦定理、切割線定理、割線定理統(tǒng)稱為“圓冪定理”,這也是幾何的一個基本模型。
(五)掌握數(shù)學(xué)思想方法。
數(shù)學(xué)思想方法是解決數(shù)學(xué)問題的靈魂,是形成數(shù)學(xué)能力、數(shù)學(xué)意識的橋梁,是靈活運用數(shù)學(xué)知識、技能的關(guān)鍵。在解數(shù)學(xué)綜合題時,尤其需要用數(shù)學(xué)思想方法來統(tǒng)帥,去探求解題思路,優(yōu)化解題過程,驗證所得結(jié)論。
在初三這一年的數(shù)學(xué)學(xué)習(xí)中,常用的數(shù)學(xué)方法有:消元法、換元法、配方法、待定系數(shù)法、反證法、作圖法等;常用的數(shù)學(xué)思想有:轉(zhuǎn)化思想,函數(shù)與方程思想、數(shù)形結(jié)合思想、分類討論思想。轉(zhuǎn)化思想就是把待解決或難解決的問題,通過某種轉(zhuǎn)化手段,使它轉(zhuǎn)化成已經(jīng)解決或比較容易解決的問題,從而求得原問題的解答。轉(zhuǎn)化思想是一種最基本的數(shù)學(xué)思想,如在運用換元法解方程時,就是通過“換元”這個手段,把分式方程轉(zhuǎn)化為整式方程,把高次方程轉(zhuǎn)化為低次方程,總之把結(jié)構(gòu)復(fù)雜的方程化為結(jié)構(gòu)簡單的方程。學(xué)習(xí)和掌握轉(zhuǎn)化思想有利于我們從更高的層次去揭示、把握數(shù)學(xué)知識、方法之間的內(nèi)在聯(lián)系,樹立辯證的觀點,提高分析問題和解決問題的能力。函數(shù)思想就是用運動變化的觀點,分析和研究具體問題中的數(shù)量關(guān)系,用函數(shù)的形式,把這種數(shù)量關(guān)系表示出來并加以研究,從而使問題得到解決。方程思想,就是從分析問題的數(shù)量關(guān)系入手,通過設(shè)定未知數(shù),把問題中的已知量與未知量的數(shù)量關(guān)系,轉(zhuǎn)化為方程或方程組,然后利用方程的理論和方法,使問題得到解決。方程思想在解題中有著廣泛的應(yīng)用,解題時要善于從題目中挖掘等量關(guān)系,能夠根據(jù)題目的特點選擇恰當(dāng)?shù)奈粗獢?shù),正確列出方程或方程組。數(shù)形結(jié)合思想就是把問題中的數(shù)量關(guān)系和幾何圖形結(jié)合起來,使“數(shù)”與“形”相互轉(zhuǎn)化,達到抽象思維與形象思維的結(jié)合,從而使問題得以化難為易。具體來說,就是把數(shù)量關(guān)系的問題,轉(zhuǎn)化為圖形問題,利用圖形的性質(zhì)得出結(jié)論,再回到數(shù)量關(guān)系上對問題做出回答;反過來,把圖形問題轉(zhuǎn)化成一個數(shù)量關(guān)系問題,經(jīng)過計算或推論得出結(jié)論再回到圖形上對問題做出回答,這是解決數(shù)學(xué)問題常用的一種方法。分類討論思想是根據(jù)所研究對象的差異,將其劃分成不同的種類,分別加以研究,從而分解矛盾,化整為零,化一般為特殊,變抽象為具體,然后再一一加以解決。分類依賴于標準的確定,不同的標準會有不同的分類方式??傊?,數(shù)學(xué)思想方法是分析解決數(shù)學(xué)問題的靈魂,也是訓(xùn)練提高數(shù)學(xué)能力的關(guān)鍵,更是由知識型學(xué)習(xí)轉(zhuǎn)向能力型學(xué)習(xí)的標志。
(六)提高數(shù)學(xué)能力。
數(shù)學(xué)能力的提高,是我們數(shù)學(xué)學(xué)習(xí)的主要目的,能力培養(yǎng)是目前中學(xué)數(shù)學(xué)教育中倍受關(guān)注的問題,因此能力評價也就成為數(shù)學(xué)考查中的熱點。
(1)熟練準確的計算能力
數(shù)式運算、方程的解法、幾何量的計算,這些都是初中數(shù)學(xué)重點解決的問題,應(yīng)該做到準確迅速。
(2)嚴密有序的分析、推理能力
推理、論證體現(xiàn)的是邏輯思維能力,幾何問題較多。提高這一能力,應(yīng)從以下幾個方面著手:
(ⅰ)認清問題中的條件、結(jié)論,特別要注意隱含條件;
(ⅱ)能正確地畫出圖形;
(ⅲ)論證要做到步步有依據(jù);
(ⅳ)學(xué)會執(zhí)果索因的分析方法。
(3)直觀形象的數(shù)形結(jié)合能力
“數(shù)”和“形”是數(shù)學(xué)中兩個最基本的概念,研究數(shù)學(xué)問題時,一定要學(xué)會利用數(shù)形結(jié)合的數(shù)學(xué)思想方法。