八年級(jí)數(shù)學(xué)單元基礎(chǔ)知識(shí)點(diǎn)
偉大的成績(jī)和辛勤勞動(dòng)是成正比例的,有一分勞動(dòng)就有一分收獲,積累,從少到多,奇跡就可以創(chuàng)造出來(lái)。學(xué)習(xí)也是一樣的,需要積累,從少變多。下面是小編給大家整理的一些八年級(jí)數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
初二數(shù)學(xué)知識(shí)點(diǎn)
軸對(duì)稱圖形:
一個(gè)圖形沿一條直線對(duì)折,直線兩旁的部分能夠完全重合。這條直線叫做對(duì)稱軸?;ハ嘀睾系狞c(diǎn)叫做對(duì)應(yīng)點(diǎn)。
1、軸對(duì)稱:
兩個(gè)圖形沿一條直線對(duì)折,其中一個(gè)圖形能夠與另一個(gè)圖形完全重合。這條直線叫做對(duì)稱軸?;ハ嘀睾系狞c(diǎn)叫做對(duì)應(yīng)點(diǎn)。
2、軸對(duì)稱圖形與軸對(duì)稱的區(qū)別與聯(lián)系:
(1)區(qū)別。軸對(duì)稱圖形討論的是“一個(gè)圖形與一條直線的對(duì)稱關(guān)系”;軸對(duì)稱討論的是“兩個(gè)圖形與一條直線的對(duì)稱關(guān)系”。
(2)聯(lián)系。把軸對(duì)稱圖形中“對(duì)稱軸兩旁的部分看作兩個(gè)圖形”便是軸對(duì)稱;把軸對(duì)稱的“兩個(gè)圖形看作一個(gè)整體”便是軸對(duì)稱圖形。
3、軸對(duì)稱的性質(zhì):
(1)成軸對(duì)稱的兩個(gè)圖形全等。
(2)對(duì)稱軸與連結(jié)“對(duì)應(yīng)點(diǎn)的線段”垂直。
(3)對(duì)應(yīng)點(diǎn)到對(duì)稱軸的距離相等。
(4)對(duì)應(yīng)點(diǎn)的連線互相平行。
三、用坐標(biāo)表示軸對(duì)稱
1、點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(x,-y);
2、點(diǎn)(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為(-x,y);
3、點(diǎn)(x,y)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為(-x,-y)。
四、關(guān)于坐標(biāo)軸夾角平分線對(duì)稱
點(diǎn)P(x,y)關(guān)于第一、三象限坐標(biāo)軸夾角平分線y=x對(duì)稱的點(diǎn)的坐標(biāo)是(y,x)
點(diǎn)P(x,y)關(guān)于第二、四象限坐標(biāo)軸夾角平分線y=-x對(duì)稱的點(diǎn)的坐標(biāo)是(-y,-x)
八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
一、在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。
3、點(diǎn)的坐標(biāo)的概念
對(duì)于平面內(nèi)任意一點(diǎn)P,過(guò)點(diǎn)P分別x軸、y軸向作垂線,垂足在上x(chóng)軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。
4、不同位置的點(diǎn)的坐標(biāo)的特征
(1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限:x;0,y;0
點(diǎn)P(x,y)在第二象限:x;0,y;0
點(diǎn)P(x,y)在第三象限:x;0,y;0
點(diǎn)P(x,y)在第四象限:x;0,y;0
(2)、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上,y=0,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上,x=0,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上,x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
(3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)
初二期末上冊(cè)數(shù)學(xué)復(fù)習(xí)資料
四邊形性質(zhì)的探索
1.多邊形的分類(lèi):
2.平行四邊形、菱形、矩形、正方形、等腰梯形的定義、性質(zhì)、判別:
(1)平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。平行四邊形的對(duì)邊平行且相等;對(duì)角相等,鄰角互補(bǔ);對(duì)角線互相平分。兩條對(duì)角線互相平分的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形。
(2)菱形:一組鄰邊相等的平行四邊形叫做菱形。菱形的四條邊都相等;對(duì)角線互相垂直平分,每一條對(duì)角線平分一組對(duì)角。四條邊都相等的四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相平分且垂直的四邊形是菱形。菱形的面積等于兩條對(duì)角線乘積的一半(面積計(jì)算,即S菱形=L1.L2/2)。
(3)矩形:有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。矩形的對(duì)角線相等;四個(gè)角都是直角。對(duì)角線相等的平行四邊形是矩形;有一個(gè)角是直角的平行四邊形是矩形。直角三角形斜邊上的中線等于斜邊長(zhǎng)的一半;在直角三角形中30°所對(duì)的直角邊是斜邊的一半。
(4)正方形:一組鄰邊相等的矩形叫做正方形。正方形具有平行四邊形、菱形、矩形的一切性質(zhì)。
(5)等腰梯形同一底上的兩個(gè)內(nèi)角相等,對(duì)角線相等。同一底上的兩個(gè)內(nèi)角相等的梯形是等腰梯形;對(duì)角線相等的梯形是等腰梯形;對(duì)角互補(bǔ)的梯形是等腰梯形。
(6)三角形中位線:連接三角形相連兩邊重點(diǎn)的線段。性質(zhì):平行且等于第三邊的一半
3.多邊形的內(nèi)角和公式:(n-2).180°;多邊形的外角和都等于。
4.中心對(duì)稱圖形:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。
八年級(jí)數(shù)學(xué)單元知識(shí)點(diǎn)相關(guān)文章:
★ 初二數(shù)學(xué)單元知識(shí)點(diǎn)
★ 八年級(jí)上冊(cè)數(shù)學(xué)第一單元知識(shí)點(diǎn)
★ 八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理歸納
★ 八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)整理
★ 人教版八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
★ 八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納
★ 初二數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)整理
★ 初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)