人教版初一數(shù)學(xué)知識點
知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學(xué)習(xí)任何學(xué)科,不僅需要大量的記憶,還需要大量的練習(xí),從而達(dá)到鞏固知識的效果。下面是小編給大家整理的一些初一數(shù)學(xué)的知識點,希望對大家有所幫助。
七年級下冊數(shù)學(xué)知識點
概率
一、事件:
1、事件分為必然事件、不可能事件、不確定事件。
2、必然事件:事先就能肯定一定會發(fā)生的事件。也就是指該事件每次一定發(fā)生,不可能不發(fā)生,即發(fā)生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不會發(fā)生的事件。也就是指該事件每次都完全沒有機會發(fā)生,即發(fā)生的可能性為零。
4、不確定事件:事先無法肯定會不會發(fā)生的事件,也就是說該事件可能發(fā)生,也可能不發(fā)生,即發(fā)生的可能性在0和1之間。
二、等可能性:是指幾種事件發(fā)生的可能性相等。
1、概率:是反映事件發(fā)生的可能性的大小的量,它是一個比例數(shù),一般用P來表示,P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)/所有可能出現(xiàn)的結(jié)果數(shù)。
2、必然事件發(fā)生的概率為1,記作P(必然事件)=1;
3、不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;
4、不確定事件發(fā)生的概率在0—1之間,記作0
三、幾何概率
1、事件A發(fā)生的概率等于此事件A發(fā)生的可能結(jié)果所組成的面積(用SA表示)除以所有可能結(jié)果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發(fā)生在每個單位面積上的概率是相同的。
2、求幾何概率:
(1)首先分析事件所占的面積與總面積的關(guān)系;
(2)然后計算出各部分的面積;
(3)最后代入公式求出幾何概率。
初一數(shù)學(xué)下冊知識點總結(jié)
篇一:直線、射線、線段
(1)直線、射線、線段的表示方法
①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.
②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.
③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。
(2)點與直線的位置關(guān)系:
①點經(jīng)過直線,說明點在直線上;
②點不經(jīng)過直線,說明點在直線外。
篇二:兩點間的距離
(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。
(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學(xué)習(xí)此概念時,注意強調(diào)最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。
篇三:正方體
(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎(chǔ)上直接想象.
(2)從實物出發(fā),結(jié)合具體的問題,辨析幾何體的展開圖,通過結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關(guān)鍵.
(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認(rèn)真確定哪兩個面的對面.
篇四:一元一次方程的解
定義:使一元一次方程左右兩邊相等的未知數(shù)的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右兩邊相等。
13、解一元一次方程:
1.解一元一次方程的一般步驟
去分母、去括號、移項、合并同類項、系數(shù)化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應(yīng)用,各種步驟都是為使方程逐漸向x=a形式轉(zhuǎn)化。
2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括號,且括號外的項在乘括號內(nèi)各項后能消去分母,就先去括號。
3.在解類似于“ax+bx=c”的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)x=c。
使方程逐漸轉(zhuǎn)化為ax=b的最簡形式體現(xiàn)化歸思想。
將ax=b系數(shù)化為1時,要準(zhǔn)確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分?jǐn)?shù)時;二要準(zhǔn)確判斷符號,a、b同號x為正,a、b異號x為負(fù)。
七年級數(shù)學(xué)學(xué)習(xí)方法技巧
1回歸書本,梳理章節(jié)概念公式、性質(zhì)定理等
就像蓋房子,房子的地基是否扎實穩(wěn)固。比如我們在復(fù)習(xí)課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復(fù)雜的公式推導(dǎo)一遍,費時費力,還總錯,而且重要的公式更加生疏。
比如知識點填空:
知識點填空
我們的孩子在學(xué)校大題普遍做的多,考試也能拿到一些分?jǐn)?shù),但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。
比如平行線是怎么定義,性質(zhì)定理有幾條,判定定理有幾條?他們之間有什么聯(lián)系和區(qū)別?在這一章中,哪些地方一定要加“同一平面內(nèi)”這5個字?家長們可以讓孩子找找看,捋一捋。
再比如說,三角形一章,涉及到三邊關(guān)系,角的關(guān)系,以及三角形的重要線段和它們的性質(zhì),等腰等邊三角形的性質(zhì),這些一定是期末選擇題的備選項。
還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。
2題型突破,對各章節(jié)常見的熱點問題歸納練習(xí)。
我們的數(shù)學(xué)、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。
大多數(shù)孩子要考的題型和難度,學(xué)校每天的作業(yè)以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標(biāo)記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應(yīng)用?通過這樣一遍的分析,孩子們都會發(fā)現(xiàn),其實考來考去,就是那幾種題型反復(fù)的出,反復(fù)的練。這是非常高效的學(xué)習(xí)方法。
3、熟悉套路、模型
平行線常見的模型:鉛筆模型、豬蹄模型,比如我經(jīng)常和大家說的,遇見拐點,就做平行線。
三角形倒角常見模型:8字型、飛鏢型、折角型。
三角形全等模型:角平分線的性質(zhì)模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。
學(xué)好這些模型相等于我們是拿著工具箱考試,效率很高,比起其他同學(xué),省去了推導(dǎo)的過程,速度又快,又準(zhǔn)確。當(dāng)然前提要掌握好基礎(chǔ)內(nèi)容,不要本末倒置。
如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學(xué)校本來要求考很難,比如壓軸題,不在于做的多,而是在精練,你做完之后不斷的復(fù)盤,用自己的語言說出思路來,找找看里面的邏輯關(guān)系。
4、堅持改錯題
把整個學(xué)期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標(biāo)記星號,問老師問同學(xué),直到會了為止,下周繼續(xù)改,看自己是否真的懂了,對于錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復(fù)的看思路,才能在考試的時候避免在同類型的題上反復(fù)錯。
人教版初一數(shù)學(xué)知識點相關(guān)文章:
★ 初一人教版數(shù)學(xué)上冊知識點總結(jié)歸納