不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初一學(xué)習(xí)方法 > 七年級數(shù)學(xué) > 初一數(shù)學(xué)知識點公式定理大全

初一數(shù)學(xué)知識點公式定理大全

時間: 慧良1230 分享

初一數(shù)學(xué)知識點公式定理大全(精選)

初中數(shù)學(xué)是由簡單明了的事項一步一步地發(fā)展而來,所以,只要學(xué)習(xí)數(shù)學(xué)的人老老實實地、一步一步地去理解,并同時記住其要點,以備以后之需用,就一定能理解其全部內(nèi)容。小編在此整理了初一數(shù)學(xué)知識點公式定理大全,希望能幫助到您。

初一數(shù)學(xué)知識點公式定理大全

目錄

數(shù)學(xué)公式定理大全

初一數(shù)學(xué)學(xué)習(xí)方法

初中數(shù)學(xué)解題方法與技巧

數(shù)學(xué)公式定理大全

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的余角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內(nèi)錯角相等,兩直線平行

11 同旁內(nèi)角互補,兩直線平行

12 兩直線平行,同位角相等

13 兩直線平行,內(nèi)錯角相等

14 兩直線平行,同旁內(nèi)角互補

15 定理 三角形兩邊的和大于第三邊

16 推論 三角形兩邊的差小于第三邊

17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

21 全等三角形的對應(yīng)邊、對應(yīng)角相等

22 邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等于60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

38 直角三角形斜邊上的中線等于斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

44 定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

45 逆定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

46 勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形

48 定理 四邊形的內(nèi)角和等于360°

49 四邊形的外角和等于360°

50 多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

51 推論 任意多邊的外角和等于360°

52 平行四邊形性質(zhì)定理1 平行四邊形的對角相等

53 平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

54 推論 夾在兩條平行線間的平行線段相等

55 平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分

56 平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57 平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58 平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59 平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60 矩形性質(zhì)定理1 矩形的四個角都是直角

61 矩形性質(zhì)定理2 矩形的對角線相等

62 矩形判定定理1 有三個角是直角的四邊形是矩形

63 矩形判定定理2 對角線相等的平行四邊形是矩形

64 菱形性質(zhì)定理1 菱形的四條邊都相等

65 菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

66 菱形面積=對角線乘積的一半,即S=(a×b)÷2

67 菱形判定定理1 四邊都相等的四邊形是菱形

68 菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69 正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等

70 正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

71 定理1 關(guān)于中心對稱的兩個圖形是全等的

72 定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關(guān)于這一點對稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等

75 等腰梯形的兩條對角線相等

76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77 對角線相等的梯形是等腰梯形

78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等

79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第 三邊

81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半

82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng) 線段成比例

87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

91 相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(ASA)

92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93 判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

94 判定定理3 三邊對應(yīng)成比例,兩三角形相似(SSS)

95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

96 性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平 分線的比都等于相似比

97 性質(zhì)定理2 相似三角形周長的比等于相似比

98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方

99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值

100 任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值

101 圓是定點的距離等于定長的點的集合

102 圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

103 圓的外部可以看作是圓心的距離大于半徑的點的集合

104 同圓或等圓的半徑相等

105 到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

109 定理 不在同一直線上的三點確定一個圓。

110 垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

111 推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

112 推論2 圓的兩條平行弦所夾的弧相等

113 圓是以圓心為對稱中心的中心對稱圖形

114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

116 定理 一條弧所對的圓周角等于它所對的圓心角的一半 117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118 推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

119 推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

120 定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

121 ①直線L和⊙O相交 dr

122 切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

123 切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

124 推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

125 推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

126 切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

127 圓的外切四邊形的兩組對邊的和相等

128 弦切角定理 弦切角等于它所夾的弧對的圓周角

129 推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

130 相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積等

131 推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項

132 切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

133 推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

134 如果兩個圓相切,那么切點一定在連心線上

135 ①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-rr) ④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

136 定理 相交兩圓的連心線垂直平分兩圓的公共弦

137 定理 把圓分成n(n≥3): ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形 ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

138 定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

139 正n邊形的每個內(nèi)角都等于(n-2)×180°/n

140 定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141 正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

142 正三角形面積√3a/4 a表示邊長

143 如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144 弧長計算公式:L=n兀R/180 145扇形面積公式:S扇形=n兀R^2/360=LR/2 146內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

返回目錄

初一數(shù)學(xué)學(xué)習(xí)方法

學(xué)習(xí)數(shù)學(xué)應(yīng)該按照五個步驟進行:

一預(yù)習(xí)

對于理科學(xué)習(xí),預(yù)習(xí)是必不可少的。我們在預(yù)習(xí)中,應(yīng)該把書上的內(nèi)容看一遍,盡力去理解,對解決不了的問題適當作出標記,請教老師或課上聽講解決,并試著做一做書后的習(xí)題檢驗預(yù)習(xí)效果。

二聽講

這一環(huán)節(jié)最為重要,因為老師把知識的精華都濃縮在課堂上,聽數(shù)學(xué)課時應(yīng)做到抓住老師講題的思路,方法。有問題記下來,課下整理,解決,數(shù)學(xué)課上一定要積極思考,跟著老師的思路走。

三復(fù)習(xí)

體會老師課上的例題,整理思維,想想自己是怎么想的,與老師的思路有何異同,想想每一道題的考點,并試著一題多解,做到舉一反三。

四作業(yè)

認真完成老師留的習(xí)題,適當挑選一些課外習(xí)題作為練習(xí),但切忌一味追求偏題,怪題,更不要打“題海戰(zhàn)術(shù)”。

五總結(jié)

這一步是為了更好的掌握所學(xué)知識。在學(xué)完一段知識或做了一道典型題后可總結(jié):總結(jié)專題的數(shù)學(xué)知識;總結(jié)自己卡殼的地方;總結(jié)自己是怎么錯的,錯在哪里,總結(jié)題目的“陷阱”設(shè)在哪里及總結(jié)自己或他人的想法。

返回目錄

初中數(shù)學(xué)解題方法與技巧

1、配方法;所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成—個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。

2、因式分解法,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學(xué)課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。

3、換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

4、構(gòu)造法;在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起—座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。

5、反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為兩種:一種是相反的結(jié)論只有一種,另一種是相反的結(jié)論有無數(shù)種。前者需要把相反的結(jié)論推翻,后者只要舉出一個反例,就達到了證明的目的。

返回目錄


初一數(shù)學(xué)知識點公式定理大全相關(guān)文章:

初一數(shù)學(xué)知識點梳理

初中七年級數(shù)學(xué)知識點歸納整理

初中七年級數(shù)學(xué)知識點總結(jié)

七年級數(shù)學(xué)重點知識點歸納

初一數(shù)學(xué)重要知識點總結(jié)

初一數(shù)學(xué)下冊重要知識點

七年級數(shù)學(xué)基本知識點

初一數(shù)學(xué)下冊知識點匯總

初一數(shù)學(xué)下冊基本知識點總結(jié)

七年級數(shù)學(xué)基礎(chǔ)知識點總結(jié)

33593