高二數(shù)學(xué)大題解題技巧
一切解題的策略的基本出發(fā)點(diǎn)在于“變換”,即把面臨的問(wèn)題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過(guò)對(duì)新題的考察,發(fā)現(xiàn)原題的解題思路,最終達(dá)到解決原題的目的。下面小編給大家分享一些高二數(shù)學(xué)大題解題技巧,希望能夠幫助大家,歡迎閱讀!
高二數(shù)學(xué)大題解題技巧
a、三角函數(shù)與向量解題技巧
平移問(wèn)題:永遠(yuǎn)記住左右平移只是對(duì)x做變化,上下平移就是對(duì)y考點(diǎn):對(duì)于這類題型我們首先要知道它一般都是考我們什么,我覺做變化,永遠(yuǎn)切記。
b、概率解題技巧
它主要是考我們向量的數(shù)量積以及三角函數(shù)的化簡(jiǎn)問(wèn)題看,同時(shí)可能會(huì)涉及到正余弦考點(diǎn):對(duì)文科生來(lái)說(shuō),這個(gè)類型的題主要是考我們對(duì)題目意思的定理,難度一般不大。理解,在解題過(guò)程能學(xué)
只要你能熟練掌握公式,這類題都不是問(wèn)題。會(huì)樹狀圖和列表,題目也是相當(dāng)?shù)暮?jiǎn)單,只要你能審題準(zhǔn)確,這類題型:這部分大題一般都是涉及以下的題型:題都是送分題;對(duì)理
最值(值域)、單調(diào)性、周期性、對(duì)稱性、未知數(shù)的取值范圍、平移科生來(lái)說(shuō),主要注意結(jié)合排列組合、獨(dú)立重復(fù)試驗(yàn)知識(shí)點(diǎn),同時(shí)會(huì)問(wèn)題等要求我們準(zhǔn)確掌握分
解題思路:布列、期望、方差的公式,難度也是不大,都屬于送分題,是要求第一步就是根根據(jù)向量公式將表示出來(lái):其表示共有兩種方法,一我們必須拿全部分?jǐn)?shù)。
種是模長(zhǎng)公式(該種方法是在題目沒有告訴坐標(biāo)的情況下應(yīng)用),即,題型:在這里我就不多說(shuō)了,都是求概率,沒有什么新穎的地方,另一種就是用坐標(biāo)公式表示出來(lái)(該種方法是在題目告訴了坐標(biāo)),不過(guò)要注意我們?cè)?jīng)
即在這里遇到過(guò)的線性規(guī)劃問(wèn)題,還有就是籃球成功率與命中率和防第二步就是三角函數(shù)的化簡(jiǎn):化簡(jiǎn)的方法都是涉及到三角函數(shù)的誘守率之間關(guān)系的類似
導(dǎo)公式(只要題目出現(xiàn)了跟或者有關(guān)的角度,一定想到誘導(dǎo)公式),題目。
解題思路:
第一步就是求出總體的情況
第二步就是求出符合題意的情況
第三步就是將兩者比起來(lái)就是題目要求的概率
這類型題目對(duì)理科生來(lái)說(shuō)一定要掌握好期望與方差的公式,同時(shí)最重要的是獨(dú)立重復(fù)試驗(yàn)概率的求法。
c、幾何解題技巧
考點(diǎn):這類題主要是考察咱們對(duì)空間物體的感覺,希望大家在平時(shí)學(xué)習(xí)過(guò)程中,多培養(yǎng)一些立體的、空間的感覺,將自己設(shè)身處地于那么一個(gè)立體的空間中去,這類題對(duì)文科生來(lái)說(shuō),難度都比較簡(jiǎn)單,但是對(duì)理科生來(lái)說(shuō),可能會(huì)比較復(fù)雜一些,特別是在二面角的求法上,對(duì)理科生來(lái)說(shuō)是一個(gè)巨大的挑戰(zhàn),它需要理科生能對(duì)兩個(gè)面夾角培養(yǎng)出感情來(lái),這樣輔助線的做法以及邊長(zhǎng)的求法就變得如此之簡(jiǎn)單了。
題型:這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計(jì)算題,包括棱錐體的體積公式計(jì)算、點(diǎn)到面的距離、有關(guān)二面角的計(jì)算(理科生掌握)解題思路:
證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情況下沒有現(xiàn)成的線存在,這個(gè)時(shí)候需要我們?cè)诿孀鲆粭l輔助線去跟線平行,一般這條輔助線的作法就是找中點(diǎn));另一種方法就是過(guò)直線作一個(gè)平面與面平行即可,輔助面的作法也基本上是找中點(diǎn)。
證面面平行:這類題比較簡(jiǎn)單,即證明這兩個(gè)平面的兩條相交線對(duì)應(yīng)平行即可。
證線面垂直如直線與面:這類型的題主要是看有前提沒有,即如果直線所在的平面與面在題目中已經(jīng)告訴我們是垂直關(guān)系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒有說(shuō)直線所在的平面與面是垂直的關(guān)系,那么我們需要證明直線垂直面內(nèi)的兩條相交線即可。
其實(shí)說(shuō)實(shí)話,證明垂直的問(wèn)題都是很簡(jiǎn)單的,一般都有什么勾股定理呀,還有更多的是根據(jù)一個(gè)定理(一條直線垂直于一個(gè)面,那么這條直線就垂直這個(gè)面的任何一條線)來(lái)證明垂直。
證面面垂直與證面面垂直:這類問(wèn)題也比較簡(jiǎn)單,就是需要轉(zhuǎn)化為證線面垂直即可。
體積和點(diǎn)到面的距離計(jì)算:如果是三棱錐的體積要注意等體積法公式的應(yīng)用,一般情況就是考這個(gè)東西,沒有什么難度的,關(guān)鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計(jì)算:這類型對(duì)理科生來(lái)說(shuō)是一個(gè)噩夢(mèng),其難度有二,第一是首先你要找到二面角在什么地方,另一個(gè)難度就是你要知道這個(gè)二面角所在直角三角形的邊長(zhǎng)分別是多少。
二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個(gè)面的頂點(diǎn)A出發(fā)引向另一個(gè)面的垂線,垂足為B,然后過(guò)垂足B向這兩個(gè)面的交線做垂線,垂足為C,最后將A點(diǎn)與C點(diǎn)連接起來(lái),這樣即為二面角(說(shuō)白了就是應(yīng)用三垂線定理來(lái)找)
二面角所在直角三角形的邊長(zhǎng)求法:一般應(yīng)用勾股定理,相似三角形,等面積法,正余弦定理等。
高二數(shù)學(xué)采取針對(duì)性措施提升成績(jī)
(1)記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來(lái)本章你覺得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補(bǔ)上。
(2)建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來(lái),以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問(wèn)題完整、推理嚴(yán)密。
(3)熟記一些數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論,使自己平時(shí)的運(yùn)算技能達(dá)到了自動(dòng)化或半自動(dòng)化的熟練程度。
(4)經(jīng)常對(duì)知識(shí)結(jié)構(gòu)進(jìn)行梳理,形成板塊結(jié)構(gòu),實(shí)行“整體集裝”,如表格化,使知識(shí)結(jié)構(gòu)一目了然;經(jīng)常對(duì)習(xí)題進(jìn)行類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問(wèn)題歸納于同一知識(shí)方法。
(5)閱讀數(shù)學(xué)課外書籍與報(bào)刊,參加數(shù)學(xué)學(xué)科課外活動(dòng)與講座,多做數(shù)學(xué)課外題,加大自學(xué)力度,拓展自己的知識(shí)面。
(6)及時(shí)復(fù)習(xí),強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,進(jìn)行適當(dāng)?shù)姆磸?fù)鞏固,消滅前學(xué)后忘。
(7)學(xué)會(huì)從多角度、多層次地進(jìn)行總結(jié)歸類。如:①?gòu)臄?shù)學(xué)思想分類②從解題方法歸類③從知識(shí)應(yīng)用上分類等,使所學(xué)的知識(shí)系統(tǒng)化、條理化、專題化、網(wǎng)絡(luò)化。
(8)經(jīng)常在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識(shí),數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問(wèn)題時(shí),是否也用到過(guò)。
(9)無(wú)論是作業(yè)還是測(cè)驗(yàn),都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學(xué)好數(shù)學(xué)的重要問(wèn)題。
高中數(shù)學(xué)??贾R(shí)及解題技巧
1、函數(shù)
函數(shù)題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2.方程或不等式
如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3.初等函數(shù)
面對(duì)含有參數(shù)的初等函數(shù)來(lái)說(shuō),在研究的時(shí)候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過(guò)的定點(diǎn),二次函數(shù)的對(duì)稱軸或是……;
4.選擇與填空中的不等式
選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5.參數(shù)的取值范圍
求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對(duì)式子變形的過(guò)程中,優(yōu)先選擇分離參數(shù)的方法;
6.恒成立問(wèn)題
恒成立問(wèn)題或是它的反面,可以轉(zhuǎn)化為最值問(wèn)題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7.圓錐曲線問(wèn)題
圓錐曲線的題目?jī)?yōu)先選擇它們的定義完成,直線與圓錐曲線相交問(wèn)題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無(wú)關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式;
8.曲線方程
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(jiǎn)(注意去掉不符合條件的特殊點(diǎn));
9.離心率
求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10.三角函數(shù)
三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11.數(shù)列問(wèn)題
數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會(huì)方程的思想;
12.立體幾何問(wèn)題
立體幾何第一問(wèn)如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問(wèn)開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2 ;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13.導(dǎo)數(shù)
導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問(wèn)中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
14.概率
概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少?zèng)Q定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
15.換元法
遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來(lái)完成;
16.二項(xiàng)分布
注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
17.絕對(duì)值問(wèn)題
絕對(duì)值問(wèn)題優(yōu)先選擇去絕對(duì)值,去絕對(duì)值優(yōu)先選擇使用定義;
18.平移
與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19.中心對(duì)稱
關(guān)于中心對(duì)稱問(wèn)題,只需使用中點(diǎn)坐標(biāo)公式就可以,關(guān)于軸對(duì)稱問(wèn)題,注意兩個(gè)等式的運(yùn)用:一是垂直,一是中點(diǎn)在對(duì)稱軸上。
高二數(shù)學(xué)大題解題技巧相關(guān)文章:
★ 高二數(shù)學(xué)立體幾何大題的13個(gè)技巧