不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高考輔導(dǎo)資料 > 2023必考高考數(shù)學(xué)知識點總結(jié)

2023必考高考數(shù)學(xué)知識點總結(jié)

時間: 業(yè)鴻0 分享

2023必考高考數(shù)學(xué)知識點總結(jié)精選

高考就是我們走上成功道路的第一個機(jī)會,高考的數(shù)學(xué)并不簡單,有哪些數(shù)學(xué)知識是高考必考的呢?下面是小編為大家整理的關(guān)于2023必考高考數(shù)學(xué)知識點總結(jié),歡迎大家來閱讀。

2023必考高考數(shù)學(xué)知識點總結(jié)

高考必備數(shù)學(xué)知識點

一個推導(dǎo)

利用錯位相減法推導(dǎo)等比數(shù)列的前n項和:

Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

兩個防范

(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

(2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

三種方法

等比數(shù)列的判斷方法有:

(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_),則{an}是等比數(shù)列.

(2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_),則數(shù)列{an}是等比數(shù)列.

(3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.

注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.

重要的數(shù)學(xué)高考知識點

等比數(shù)列的基本性質(zhì)

⑴公比為q的等比數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等比數(shù)列,其公比為q(m為等距離的項數(shù)之差)。

⑵對任何m、n,在等比數(shù)列{a}中有:a=a·q,特別地,當(dāng)m=1時,便得等比數(shù)列的通項公式,此式較等比數(shù)列的通項公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆為自然數(shù),且t+k,p,…,m+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當(dāng){a}為等比數(shù)列時,有:a、a、a、…=a、a、a、…。

⑷若{a}是公比為q的等比數(shù)列,則{|a|}、{a}、{ka}也是等比數(shù)列,其公比分別為|q|}、{q}、{q}。

⑸如果{a}是等比數(shù)列,公比為q,那么,a,a,a,…,a,…是以q為公比的等比數(shù)列。

⑹如果{a}是等比數(shù)列,那么對任意在n,都有a·a=a·q>0。

⑺兩個等比數(shù)列各對應(yīng)項的積組成的數(shù)列仍是等比數(shù)列,且公比等于這兩個數(shù)列的公比的積。

⑻當(dāng)q>1且a>0或00且01時,等比數(shù)列為遞減數(shù)列;當(dāng)q=1時,等比數(shù)列為常數(shù)列;當(dāng)q<0時,等比數(shù)列為擺動數(shù)列。

高考數(shù)學(xué)必考內(nèi)容知識

1、拋物線是軸對稱圖形。對稱軸為直線

x=—b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

2、拋物線有一個頂點P,坐標(biāo)為

P(—b/2a,(4ac—b’2)/4a)

當(dāng)—b/2a=0時,P在y軸上;當(dāng)Δ=b’2—4ac=0時,P在x軸上。

3、二次項系數(shù)a決定拋物線的開口方向和大小。

當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

5、常數(shù)項c決定拋物線與y軸交點。

拋物線與y軸交于(0,c)

6、拋物線與x軸交點個數(shù)

Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

1809021