不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

2020屆高三數(shù)學(xué)復(fù)習(xí)必備知識點

時間: 慧良21230 分享

  對于那些從小就不喜歡數(shù)學(xué),對數(shù)學(xué)不來感的同學(xué),想要在高考中拿到高分簡直是要比登天還難,接下來小編為大家整理了高三數(shù)學(xué)學(xué)習(xí)內(nèi)容,一起來看看吧!

  2020屆高三數(shù)學(xué)復(fù)習(xí)必備知識點

  1、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。

  2、忽視集合元素的三性致誤

  集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。

  3、判斷函數(shù)奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。

  4、函數(shù)零點定理使用不當(dāng)致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。

  5、函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤

  在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  6、三角函數(shù)的單調(diào)性判斷致誤

  對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。

  7、向量夾角范圍不清致誤

  解題時要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

  8、忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視。

  9、對數(shù)列的定義、性質(zhì)理解錯誤

  等差數(shù)列的前n項和在公差不為零時是關(guān)于n的常數(shù)項為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。

  10、an與Sn關(guān)系不清致誤

  在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個關(guān)系對任意數(shù)列都是成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點。

  11、錯位相減求和項處理不當(dāng)致誤

  錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項的乘積所組成的,求其前n項和?;痉椒ㄊ窃O(shè)這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉(zhuǎn)化為以求一個等比數(shù)列的前n項和或前n-1項和為主的求和問題.這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理。

  12、不等式性質(zhì)應(yīng)用不當(dāng)致誤

  在使用不等式的基本性質(zhì)進(jìn)行推理論證時一定要準(zhǔn)確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會出現(xiàn)錯誤。

  13、數(shù)列中的最值錯誤

  數(shù)列問題中其通項公式、前n項和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點認(rèn)識和理解數(shù)列問題。數(shù)列的通項an與前n項和Sn的關(guān)系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠(yuǎn)近而定。

  14、不等式恒成立問題致誤

  解決不等式恒成立問題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法。通過最值產(chǎn)生結(jié)論。應(yīng)注意恒成立與存在性問題的區(qū)別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系。

  15、忽視三視圖中的實、虛線致誤

  三視圖是根據(jù)正投影原理進(jìn)行繪制,嚴(yán)格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。

  16、面積體積計算轉(zhuǎn)化不靈活致誤

  面積、體積的計算既需要學(xué)生有扎實的基礎(chǔ)知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還臺為錐的思想:這是處理臺體時常用的思想方法。(2)割補法:求不規(guī)則圖形面積或幾何體體積時常用。(3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問題,常畫出軸截面進(jìn)行分析求解。

  17、忽視基本不等式應(yīng)用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時,務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時,一定要注意ax,bx的符號,必要時要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號能否取到。

  高考數(shù)學(xué)答題套路

  高考數(shù)學(xué)答題方法

  第一類問題———高考數(shù)學(xué)遺憾之錯。就是分明會做,反而做錯了的題;比如說,“審題之錯”是由于審題出現(xiàn)失誤,看錯數(shù)字等造成的;“計算之錯”是由于計算出現(xiàn)差錯造成的;“抄寫之錯”是在草稿紙上做對了,往試卷上一抄就寫錯了、漏掉了;“表達(dá)之錯”是自己答案正確但與題目要求的表達(dá)不一致,如單位混用等。

  第二類問題———高考數(shù)學(xué)似非之錯。理解的不夠透徹,應(yīng)用得不夠自如;回答不嚴(yán)密、不完整;第一遍做對了,一改反而改錯了,或第一遍做錯了,后來又改對了;一道題做到一半做不下去了等等。

  第三類問題———高考數(shù)學(xué)無為之錯。由于不會,因而答錯了或猜的,或者根本沒有答。這是無思路、不理解,更談不上應(yīng)用的問題。

  高考數(shù)學(xué)雖然比較難,但是只要你努力,相信還是可以學(xué)好的,首要的一點就是自己對自己要有信心,否則,走不出自己心理的束縛,很難有所成就。學(xué)習(xí)數(shù)學(xué)應(yīng)該要在宏觀上對其有一個整體的把握,總的來說,數(shù)學(xué)可以分為8大部分:函數(shù)、數(shù)列、立體幾何、解析幾何、排列組合、不等式、平面向量、二項式定理以及統(tǒng)計。其中,尤其以函數(shù)和幾何較為難學(xué),同時也是高考數(shù)學(xué)重點知識內(nèi)容,要弄清楚它們各自的特點以及相互之間的聯(lián)系,這些都是最基本的內(nèi)容。而要做到這一點,首先就要對課本上的一些基本的概念、定理、公式了如指掌,用的時候才能從容不迫,信手拈來。

  高考數(shù)學(xué)答題套路——解三角形問題

  (1)高考數(shù)學(xué)解題路線圖

 ?、?a 化簡變形;b 用余弦定理轉(zhuǎn)化為邊的關(guān)系;c 變形證明。

  ② a 用余弦定理表示角;b 用基本不等式求范圍;c 確定角的取值范圍。

  (2)構(gòu)建答題模板

 ?、俣l件:即確定三角形中的已知和所求,在圖形中標(biāo)注出來,然后確定轉(zhuǎn)化的方向。

 ?、诙üぞ撸杭锤鶕?jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化。

 ?、矍蠼Y(jié)果。

  ④再反思:在實施邊角互化的時候應(yīng)注意轉(zhuǎn)化的方向,一般有兩種思路:一是全部轉(zhuǎn)化為邊之間的關(guān)系;二是全部轉(zhuǎn)化為角之間的關(guān)系,然后進(jìn)行恒等變形。

  高考數(shù)學(xué)答題套路——數(shù)列的通項、求和問題

  (1高考數(shù)學(xué))解題路線圖

 ?、傧惹竽骋豁棧蛘哒业綌?shù)列的關(guān)系式。

 ?、谇笸椆健?/p>

 ?、矍髷?shù)列和通式。

  (2)構(gòu)建答題模板

 ?、僬疫f推:根據(jù)已知條件確定數(shù)列相鄰兩項之間的關(guān)系,即找數(shù)列的遞推公式。

  ②求通項:根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項公式,或利用累加法或累乘法求通項公式。

 ?、鄱ǚ椒ǎ焊鶕?jù)數(shù)列表達(dá)式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

  ④寫步驟:規(guī)范寫出求和步驟。

 ?、菰俜此迹悍此蓟仡?,查看關(guān)鍵點、易錯點及解題規(guī)范。

  高考數(shù)學(xué)答題套路—— 利用空間向量求角問題

  (1)解題路線圖

 ?、俳⒆鴺?biāo)系,并用坐標(biāo)來表示向量。

 ?、诳臻g向量的坐標(biāo)運算。

 ?、塾孟蛄抗ぞ咔罂臻g的角和距離。

  (2)高考數(shù)學(xué)構(gòu)建答題模板

 ?、僬掖怪保赫页?或作出)具有公共交點的三條兩兩垂直的直線。

 ?、趯懽鴺?biāo):建立空間直角坐標(biāo)系,寫出特征點坐標(biāo)。

 ?、矍笙蛄浚呵笾本€的方向向量或平面的法向量。

 ?、芮髪A角:計算向量的夾角。

 ?、莸媒Y(jié)論:得到所求兩個平面所成的角或直線和平面所成的角。

  高考數(shù)學(xué)答題套路——解析幾何中的探索性問題

  (1)解題路線圖

 ?、僖话阆燃僭O(shè)這種情況成立(點存在、直線存在、位置關(guān)系存在等)

 ?、趯⑸厦娴募僭O(shè)代入已知條件求解。

 ?、鄣贸鼋Y(jié)論。

  (2)高考數(shù)學(xué)構(gòu)建答題模板

 ?、傧燃俣ǎ杭僭O(shè)結(jié)論成立。

 ?、谠偻评恚阂约僭O(shè)結(jié)論成立為條件,進(jìn)行推理求解。

 ?、巯陆Y(jié)論:若推出合理結(jié)果,經(jīng)驗證成立則肯。 定假設(shè);若推出矛盾則否定假設(shè)。

 ?、茉倩仡櫍翰榭搓P(guān)鍵點,易錯點(特殊情況、隱含條件等),審視解題規(guī)范性。

117207