不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

時(shí)間: 舒淇4599 分享

很多學(xué)生在復(fù)習(xí)高三數(shù)學(xué)知識(shí)點(diǎn)時(shí),因?yàn)橹皼](méi)有做過(guò)系統(tǒng)的總結(jié),后面導(dǎo)致復(fù)習(xí)時(shí)整體效率不高,下面小編為大家?guī)?lái)高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納,希望對(duì)您有所幫助!

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

1.直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

2.定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

3.相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

4.參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

5.交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);

⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

高三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)

1、集合的概念

集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說(shuō)明:某些制定的且不同的對(duì)象集合在一起就稱(chēng)為一個(gè)集合。組成集合的對(duì)象叫元素,集合通常用大寫(xiě)字母A、B、C、…來(lái)表示。元素常用小寫(xiě)字母a、b、c、…來(lái)表示。

集合是一個(gè)確定的整體,因此對(duì)集合也可以這樣描述:具有某種屬性的對(duì)象的全體組成的一個(gè)集合。

2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

3、集合中元素的特性

(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一具體對(duì)象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

(2)互異性:“集合張的元素必須是互異的”,就是說(shuō)“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

(3)無(wú)序性:集合與其中元素的排列次序無(wú)關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

4、集合的分類(lèi)

集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類(lèi):

有限集:含有有限個(gè)元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。

無(wú)限集:含有無(wú)限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無(wú)限集。

特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{x?R|+1=0}。

5、特定的集合的表示

為了書(shū)寫(xiě)方便,我們規(guī)定常見(jiàn)的數(shù)集用特定的字母表示,下面是幾種常見(jiàn)的數(shù)集表示方法,請(qǐng)牢記。

(1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱(chēng)非負(fù)整數(shù)集(或自然數(shù)集),記做N。

(2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱(chēng)正整數(shù)集,記做N_或N+。

(3)全體整數(shù)的集合通常簡(jiǎn)稱(chēng)為整數(shù)集Z。

(4)全體有理數(shù)的集合通常簡(jiǎn)稱(chēng)為有理數(shù)集,記做Q。

(5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱(chēng)為實(shí)數(shù)集,記做R。

學(xué)好數(shù)學(xué)的技巧有哪些

做數(shù)學(xué)題的目的是檢查自己學(xué)的知識(shí)、方法是否已經(jīng)掌握很好了。如果掌握得不準(zhǔn)或有偏差,那么多做題反而鞏固了自己的缺欠,所以要在準(zhǔn)確把握住基本知識(shí)和方法的基礎(chǔ)上再做一定量的數(shù)學(xué)練習(xí)是很有必要的。

對(duì)于中檔題,尤其要講究做題效益,做完題之后,需要進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識(shí)或數(shù)學(xué)思考方法是什么等。自己可以自問(wèn)自己,該題是否還有其他的想法或解法也可以做出來(lái)。

做完題之后,要分析方法與解法,善于總結(jié),該解題方法在其他問(wèn)題時(shí),是否也用到過(guò),然后把它聯(lián)系起來(lái),這樣可以得到更多的經(jīng)驗(yàn)和教訓(xùn),更重要的是要養(yǎng)成善于思考的好習(xí)慣,這樣將更利于以后的學(xué)習(xí)打下扎實(shí)的基礎(chǔ)。

當(dāng)然,學(xué)好數(shù)學(xué),如果沒(méi)有一定量的練習(xí)就不能形成技能。有的同學(xué)做完作業(yè),就一推了事,其實(shí)這是很不好的習(xí)慣,應(yīng)當(dāng)學(xué)會(huì)通過(guò)自己獨(dú)立檢查來(lái)驗(yàn)證作業(yè)的結(jié)果是否正確,這樣不但可以培養(yǎng)自己獨(dú)立思考能力,而且對(duì)參加各種數(shù)學(xué)考試也十分有利。

1612046