不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 高三數(shù)學(xué)知識點總結(jié)框架

高三數(shù)學(xué)知識點總結(jié)框架

時間: 楚琪0 分享

高三數(shù)學(xué)知識點總結(jié)框架大全

奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學(xué)習(xí)中也是需要的??吹搅艘坏烙幸馑嫉念},就不惜一切代價攻克它。為了學(xué)習(xí),廢寢忘食一點也不是難事,只要你做到了有興趣。下面是小編給大家?guī)淼母呷龜?shù)學(xué)知識點總結(jié)框架,以供大家參考!

高三數(shù)學(xué)知識點總結(jié)框架

第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

第二:平面向量和三角函數(shù)。

重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

第三:數(shù)列。

數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

第四:空間向量和立體幾何。

在里面重點考察兩個方面:一個是證明;一個是計算。

第五:概率和統(tǒng)計。

這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當然應(yīng)該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

第六:解析幾何。

這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結(jié)下面五類??嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20__年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

第七:押軸題。

考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

高三數(shù)學(xué)知識點歸納大全

1、函數(shù)的奇偶性

(1)若f(_)是偶函數(shù),那么f(_)=f(-_);

(2)若f(_)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價形式:f(_)±f(-_)=0或(f(_)≠0);

(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2、復(fù)合函數(shù)的有關(guān)問題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(_)]的定義域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定義域為[a,b],求f(_)的定義域,相當于_∈[a,b]時,求g(_)的值域(即f(_)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3、函數(shù)圖像(或方程曲線的對稱性)

(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(_,y)=0,關(guān)于y=_+a(y=-_+a)的對稱曲線C2的方程為f(y-a,_+a)=0(或f(-y+a,-_+a)=0);

(4)曲線C1:f(_,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-_,2b-y)=0;

(5)若函數(shù)y=f(_)對_∈R時,f(a+_)=f(a-_)恒成立,則y=f(_)圖像關(guān)于直線_=a對稱;

(6)函數(shù)y=f(_-a)與y=f(b-_)的圖像關(guān)于直線_=對稱;

4、函數(shù)的周期性

(1)y=f(_)對_∈R時,f(_+a)=f(_-a)或f(_-2a)=f(_)(a>0)恒成立,則y=f(_)是周期為2a的周期函數(shù);

(2)若y=f(_)是偶函數(shù),其圖像又關(guān)于直線_=a對稱,則f(_)是周期為2︱a︱的周期函數(shù);

(3)若y=f(_)奇函數(shù),其圖像又關(guān)于直線_=a對稱,則f(_)是周期為4︱a︱的周期函數(shù);

(4)若y=f(_)關(guān)于點(a,0),(b,0)對稱,則f(_)是周期為2的周期函數(shù);

(5)y=f(_)的圖象關(guān)于直線_=a,_=b(a≠b)對稱,則函數(shù)y=f(_)是周期為2的周期函數(shù);

(6)y=f(_)對_∈R時,f(_+a)=-f(_)(或f(_+a)=,則y=f(_)是周期為2的周期函數(shù);

5、方程k=f(_)有解k∈D(D為f(_)的值域);

6、a≥f(_)恒成立a≥[f(_)]ma_,;a≤f(_)恒成立a≤[f(_)]min;

7、(1)(a>0a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號由口訣“同正異負”記憶;

(4)alogaN=N(a>0,a≠1,N>0);

8、判斷對應(yīng)是否為映射時,抓住兩點:

(1)A中元素必須都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

10、對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

(1)定義域上的單調(diào)函數(shù)必有反函數(shù);

(2)奇函數(shù)的反函數(shù)也是奇函數(shù);

(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

(4)周期函數(shù)不存在反函數(shù);

(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

(6)y=f(_)與y=f-1(_)互為反函數(shù),設(shè)f(_)的定義域為A,值域為B,則有f[f--1(_)]=_(_∈B),f--1[f(_)]=_(_∈A);

11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

12、依據(jù)單調(diào)性

利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;

13、恒成立問題的處理方法

(1)分離參數(shù)法;

(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

a(1)=a,a(n)為公差為r的等差數(shù)列

通項公式:

a(n)=a(n-1)+r=a(n-2)+2r=、、、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

可用歸納法證明。

n=1時,a(1)=a+(1-1)r=a。成立。

假設(shè)n=k時,等差數(shù)列的通項公式成立。a(k)=a+(k-1)r

則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

通項公式也成立。

因此,由歸納法知,等差數(shù)列的通項公式是正確的。

求和公式:

S(n)=a(1)+a(2)+、、、+a(n)

=a+(a+r)+、、、+[a+(n-1)r]

=na+r[1+2+、、、+(n-1)]

=na+n(n-1)r/2

同樣,可用歸納法證明求和公式。

a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

通項公式:

a(n)=a(n-1)r=a(n-2)r^2=、、、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

可用歸納法證明等比數(shù)列的通項公式。

求和公式:

S(n)=a(1)+a(2)+、、、+a(n)

=a+ar+、、、+ar^(n-1)

=a[1+r+、、、+r^(n-1)]

r不等于1時,

S(n)=a[1-r^n]/[1-r]

r=1時,

S(n)=na、

同樣,可用歸納法證明求和公式。

高三最新數(shù)學(xué)知識點

等式的性質(zhì):

①不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。

不等式基本性質(zhì)有:

(1)a>bb

(2)a>b,b>ca>c(傳遞性)

(3)a>ba+c>b+c(c∈R)

(4)c>0時,a>bac>bc

c<0時,a>bac

運算性質(zhì)有:

(1)a>b,c>da+c>b+d。

(2)a>b>0,c>d>0ac>bd。

(3)a>b>0an>bn(n∈N,n>1)。

(4)a>b>0>(n∈N,n>1)。

應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。

②關(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:

(1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

(2)利用不等式的性質(zhì)及實數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實數(shù)值的大小。

(3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。

高中數(shù)學(xué)集合復(fù)習(xí)知識點

任一A,B,記做AB

AB,BA ,A=B

AB={|A|,且|B|}

AB={|A|,或|B|}

Card(AB)=card(A)+card(B)-card(AB)

(1)命題

原命題若p則q

逆命題若q則p

否命題若p則q

逆否命題若q,則p

(2)AB,A是B成立的充分條件

BA,A是B成立的必要條件

AB,A是B成立的充要條件

1.集合元素具有①確定性;②互異性;③無序性

2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

(3)集合的運算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性質(zhì)

n元集合的字集數(shù):2n

真子集數(shù):2n-1;

非空真子集數(shù):2n-2

高中數(shù)學(xué)集合知識點歸納

1、集合的概念

集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:

元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

3、集合中元素的特性

(1)確定性:設(shè)A是一個給定的集合,_是某一具體對象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

(2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

(3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。

4、集合的分類

集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:

有限集:含有有限個元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。

無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{|R|+1=0}。

5、特定的集合的表示

為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

(1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。

(2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

(3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

(4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

(5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。

高三數(shù)學(xué)知識點總結(jié)框架相關(guān)文章:

高考數(shù)學(xué)必考的7個題型及知識框架

高中數(shù)學(xué)超全知識網(wǎng)絡(luò)框架圖及答題技巧掌握!

高中數(shù)學(xué)知識點提綱

5篇高三數(shù)學(xué)教案總結(jié)

高考數(shù)學(xué)18個易錯知識點及各分段學(xué)生的提分秘籍和答題模板

高三各科學(xué)習(xí)方法總結(jié)

高考數(shù)學(xué)備考方法

高三數(shù)學(xué)學(xué)習(xí)規(guī)劃

高考數(shù)學(xué)得分技巧

高考數(shù)學(xué)一輪復(fù)習(xí)沖刺規(guī)劃

1321423