初三數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)
學(xué)習(xí)這件事不在乎有沒(méi)有人教你,最重要的是在于你自己有沒(méi)有覺(jué)悟和恒心。任何科目學(xué)習(xí)方法其實(shí)都是一樣的,不斷的記憶與練習(xí),使知識(shí)刻在腦海里。下面是小編給大家整理的一些初三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。
九年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納
知識(shí)點(diǎn)1.概念
把形狀相同的圖形叫做相似圖形。(即對(duì)應(yīng)角相等、對(duì)應(yīng)邊的比也相等的圖形)
解讀:(1)兩個(gè)圖形相似,其中一個(gè)圖形可以看做由另一個(gè)圖形放大或縮小得到.
(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.
(3)判斷兩個(gè)圖形是否相似,就是看這兩個(gè)圖形是不是形狀相同,與其他因素?zé)o關(guān).
知識(shí)點(diǎn)2.比例線段
對(duì)于四條線段a,b,c,d,如果其中兩條線段的長(zhǎng)度的比與另兩條線段的長(zhǎng)度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡(jiǎn)稱(chēng)比例線段.
知識(shí)點(diǎn)3.相似多邊形的性質(zhì)
相似多邊形的性質(zhì):相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等.
解讀:(1)正確理解相似多邊形的定義,明確“對(duì)應(yīng)”關(guān)系.
(2)明確相似多邊形的“對(duì)應(yīng)”來(lái)自于書(shū)寫(xiě),且要明確相似比具有順序性.
知識(shí)點(diǎn)4.相似三角形的概念
對(duì)應(yīng)角相等,對(duì)應(yīng)邊之比相等的三角形叫做相似三角形.
解讀:(1)相似三角形是相似多邊形中的一種;
(2)應(yīng)結(jié)合相似多邊形的性質(zhì)來(lái)理解相似三角形;
(3)相似三角形應(yīng)滿(mǎn)足形狀一樣,但大小可以不同;
(4)相似用“∽”表示,讀作“相似于”;
(5)相似三角形的對(duì)應(yīng)邊之比叫做相似比.
知識(shí)點(diǎn)5.相似三角的判定方法
(1)定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似;
(2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長(zhǎng)線)所構(gòu)成的三角形與原三角形相似.
(3)如果一個(gè)三角形的兩個(gè)角分別與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似.
(4)如果一個(gè)三角的兩條邊與另一個(gè)三角形的兩條邊對(duì)應(yīng)成比例,并且?jiàn)A角相等,那么這兩個(gè)三角形相似.
(5)如果一個(gè)三角形的三條邊分別與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似.
(6)直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形都相似.
知識(shí)點(diǎn)6.相似三角形的性質(zhì)
(1)對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等;
(2)對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比,對(duì)應(yīng)角平分線的比都等于相似比;
(3)相似三角形周長(zhǎng)之比等于相似比;面積之比等于相似比的平方.
(4)射影定理
九年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
直線與圓的位置關(guān)系
①直線和圓無(wú)公共點(diǎn),稱(chēng)相離。AB與圓O相離,d>r。
②直線和圓有兩個(gè)公共點(diǎn),稱(chēng)相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點(diǎn),稱(chēng)相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離;
旋轉(zhuǎn)變換
1.概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。
說(shuō)明:(1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;(2)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)中心始終保持不動(dòng).(3)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)的方向是相同的.(4)旋轉(zhuǎn)過(guò)程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的.⑤旋轉(zhuǎn)不改變圖形的大小和形狀.
2.性質(zhì):(1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
(3)旋轉(zhuǎn)前、后的圖形全等.
3.旋轉(zhuǎn)作圖的步驟和方法:(1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;(2)找出圖形的關(guān)鍵點(diǎn);(3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來(lái),然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);(4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形.
說(shuō)明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角.
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度.時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過(guò)方程里的已知量求出未知量的過(guò)程就是解方程。我們?cè)谛W(xué)就已經(jīng)接觸過(guò)簡(jiǎn)易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,任何一個(gè)一元一次方程都能順利地解出來(lái)。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡(jiǎn)單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程組、、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過(guò)一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過(guò)解方程來(lái)求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。
所謂的“方程”思想就是對(duì)于數(shù)學(xué)問(wèn)題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無(wú)處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專(zhuān)門(mén)用代數(shù)方法去研究幾何問(wèn)題的一門(mén)課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問(wèn)題就離不開(kāi)圖象了。往往借助圖象能使問(wèn)題明朗化,比較容易找到問(wèn)題的關(guān)鍵所在,從而解決問(wèn)題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫(huà)出草圖來(lái)分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人慢慢會(huì)養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
3、“對(duì)應(yīng)”的思想
“對(duì)應(yīng)”的思想由來(lái)已久,比如我們將一支鉛筆、一本書(shū)、一棟房子對(duì)應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對(duì)耳環(huán)、雙胞胎對(duì)應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對(duì)應(yīng)”擴(kuò)展到對(duì)應(yīng)一種形式,對(duì)應(yīng)一種關(guān)系,等等。比如我們?cè)谟?jì)算或化簡(jiǎn)中,將對(duì)應(yīng)公式的左邊,對(duì)應(yīng)a,y對(duì)應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。這就是運(yùn)用“對(duì)應(yīng)”的思想和方法來(lái)解題。初二、初三我們還將看到數(shù)軸上的點(diǎn)與實(shí)數(shù)之間的一一對(duì)應(yīng),直角坐標(biāo)平面上的點(diǎn)與一對(duì)有序?qū)崝?shù)之間的一一對(duì)應(yīng),函數(shù)與其圖象之間的對(duì)應(yīng)?!皩?duì)應(yīng)”的思想在今后的學(xué)習(xí)中將會(huì)發(fā)揮越來(lái)越大的作用
初三數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)相關(guān)文章:
★ 九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)下冊(cè)
★ 九年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 最新初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全
★ 九年級(jí)數(shù)學(xué)下冊(cè)圓的知識(shí)點(diǎn)整理
★ 人教版初三數(shù)學(xué)知識(shí)點(diǎn)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 九年級(jí)下學(xué)期期末數(shù)學(xué)復(fù)習(xí)資料
★ 初三年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)