不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初三學(xué)習(xí)方法>九年級(jí)數(shù)學(xué)>

2022北師大版九年級(jí)數(shù)學(xué)教案

時(shí)間: 小恒0 分享

虛假的學(xué)問(wèn)比無(wú)知更糟糕。無(wú)知好比一塊空地,可以耕耘和播種;虛假的學(xué)問(wèn)就象一塊長(zhǎng)滿(mǎn)雜草的荒地,幾乎無(wú)法把草拔盡。就像不扎實(shí)的數(shù)學(xué)基礎(chǔ)。下面就是小編為大家梳理歸納的內(nèi)容,希望能夠幫助到大家。

 2020北師大九年級(jí)下冊(cè)數(shù)學(xué)教案:正弦和余弦

一、素質(zhì)教育目標(biāo)

(一)知識(shí)教學(xué)點(diǎn)

使學(xué)生知道當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也都固定這一事實(shí).

(二)能力訓(xùn)練點(diǎn)

逐步培養(yǎng)學(xué)生會(huì)觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點(diǎn)

引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.

二、教學(xué)重點(diǎn)、難點(diǎn)

1.重點(diǎn):使學(xué)生知道當(dāng)銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也是固定的這一事實(shí).

2.難點(diǎn):學(xué)生很難想到對(duì)任意銳角,它的對(duì)邊、鄰邊與斜邊的比值也是固定的事實(shí),關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.

三、教學(xué)步驟

(一)明確目標(biāo)

1.如圖6-1,長(zhǎng)5米的梯子架在高為3米的墻上,則A、B間距離為多少米?

2.長(zhǎng)5米的梯子以?xún)A斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?

3.若長(zhǎng)5米的梯子以?xún)A斜角40°架在墻上,則A、B間距離為多少?

4.若長(zhǎng)5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?

前兩個(gè)問(wèn)題學(xué)生很容易回答.這兩個(gè)問(wèn)題的設(shè)計(jì)主要是引起學(xué)生的回憶,并使學(xué)生意識(shí)到,本章要用到這些知識(shí).但后兩個(gè)問(wèn)題的設(shè)計(jì)卻使學(xué)生感到疑惑,這對(duì)初三年級(jí)這些好奇、好勝的學(xué)生來(lái)說(shuō),起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時(shí)使學(xué)生對(duì)本章所要學(xué)習(xí)的內(nèi)容的特點(diǎn)有一個(gè)初步的了解,有些問(wèn)題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識(shí)是不能解決的,解決這類(lèi)問(wèn)題,關(guān)鍵在于找到一種新方法,求出一條邊或一個(gè)未知銳角,只要做到這一點(diǎn),有關(guān)直角三角形的其他未知邊角就可用學(xué)過(guò)的知識(shí)全部求出來(lái).

通過(guò)四個(gè)例子引出課題.

(二)整體感知

1.請(qǐng)每一位同學(xué)拿出自己的三角板,分別測(cè)量并計(jì)算30°、45°、60°角的對(duì)邊、鄰邊與斜邊的比值.

學(xué)生很快便會(huì)回答結(jié)果:無(wú)論三角尺大小如何,其比值是一個(gè)固定的值.程度較好的學(xué)生還會(huì)想到,以后在這些特殊直角三角形中,只要知道其中一邊長(zhǎng),就可求出其他未知邊的長(zhǎng).

2.請(qǐng)同學(xué)畫(huà)一個(gè)含40°角的直角三角形,并測(cè)量、計(jì)算40°角的對(duì)邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學(xué)生可能會(huì)想到,當(dāng)銳角取其他固定值時(shí),其對(duì)邊、鄰邊與斜邊的比值也是固定的嗎?

這樣做,在培養(yǎng)學(xué)生動(dòng)手能力的同時(shí),也使學(xué)生對(duì)本節(jié)課要研究的知識(shí)有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.

(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過(guò)程

1.通過(guò)動(dòng)手實(shí)驗(yàn),學(xué)生會(huì)猜想到“無(wú)論直角三角形的銳角為何值,它的對(duì)邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個(gè)命題呢?學(xué)生這時(shí)的思維很活躍.對(duì)于這個(gè)問(wèn)題,部分學(xué)生可能能解決它.因此教師此時(shí)應(yīng)讓學(xué)生展開(kāi)討論,獨(dú)立完成.

2.學(xué)生經(jīng)過(guò)研究,也許能解決這個(gè)問(wèn)題.若不能解決,教師可適當(dāng)引導(dǎo):

若一組直角三角形有一個(gè)銳角相等,可以把其

頂點(diǎn)A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學(xué)們能解決這個(gè)問(wèn)題嗎?引導(dǎo)學(xué)生獨(dú)立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的對(duì)邊、鄰邊與斜邊的比值,是一個(gè)固定值.

通過(guò)引導(dǎo),使學(xué)生自己獨(dú)立掌握了重點(diǎn),達(dá)到知識(shí)教學(xué)目標(biāo),同時(shí)培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.

而前面導(dǎo)課中動(dòng)手實(shí)驗(yàn)的設(shè)計(jì),實(shí)際上為突破難點(diǎn)而設(shè)計(jì).這一設(shè)計(jì)同時(shí)起到培養(yǎng)學(xué)生思維能力的作用.

練習(xí)題為 作了孕伏同時(shí)使學(xué)生知道任意銳角的對(duì)邊與斜邊的比值都能求出來(lái).

(四)總結(jié)與擴(kuò)展

1.引導(dǎo)學(xué)生作知識(shí)總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過(guò)動(dòng)手實(shí)驗(yàn)、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對(duì)邊、鄰邊與斜邊的比值也是固定的.

教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過(guò)同學(xué)們自己動(dòng)手實(shí)驗(yàn),大膽猜測(cè)和積極思考,我們發(fā)現(xiàn)了一個(gè)新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動(dòng)學(xué)知識(shí)為主動(dòng)發(fā)現(xiàn)問(wèn)題,培養(yǎng)自己的創(chuàng)新意識(shí).

2.擴(kuò)展:當(dāng)銳角為30°時(shí),它的對(duì)邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時(shí),它的對(duì)邊與斜邊的比值也是固定的.如果知道這個(gè)比值,已知一邊求其他未知邊的問(wèn)題就迎刃而解了.看來(lái)這個(gè)比值很重要,下節(jié)課我們就著重研究這個(gè)“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過(guò)這種擴(kuò)展,不僅對(duì)正、余弦概念有了初步印象,同時(shí)又激發(fā)了學(xué)生的興趣.

四、布置作業(yè)

本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.

五、板書(shū)設(shè)計(jì)

 2020人教版九年級(jí)數(shù)學(xué)教案:函數(shù)

教學(xué)目標(biāo):

1、進(jìn)一步理解函數(shù)的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;

2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.

3、會(huì)求函數(shù)值,并體會(huì)自變量與函數(shù)值間的對(duì)應(yīng)關(guān)系.

4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.

5、通過(guò)函數(shù)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.

教學(xué)重點(diǎn):了解函數(shù)的意義,會(huì)求自變量的取值范圍及求函數(shù)值.

教學(xué)難點(diǎn):函數(shù)概念的抽象性.

教學(xué)過(guò)程:

(一)引入新課:

上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).

生活中有很多實(shí)例反映了函數(shù)關(guān)系,你能舉出一個(gè),并指出式中的自變量與函數(shù)嗎?

1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.

2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買(mǎi)100元的小禮物送給同學(xué),求所能購(gòu)買(mǎi)的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.

解:1、y=30n

y是函數(shù),n是自變量

2、 ,n是函數(shù),a是自變量.

(二)講授新課

剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示函數(shù)時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).

例1、求下列函數(shù)中自變量x的取值范圍.

(1)   (2)

(3)   (4)

(5)   (6)

分析:在(1)、(2)中,x取任意實(shí)數(shù), 與 都有意義.

(3)小題的 是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .

同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .

第(5)小題, 是二次根式,二次根式成立的條件是被開(kāi)方數(shù)大于、等于零. 的被開(kāi)方數(shù)是 .

同理,第(6)小題 也是二次根式, 是被開(kāi)方數(shù),

.

解:(1)全體實(shí)數(shù)

(2)全體實(shí)數(shù)

(3)

(4) 且

(5)

(6)

小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開(kāi)方數(shù)大于、等于零.

注意:有些同學(xué)沒(méi)有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要 即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問(wèn)本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問(wèn)題也與次類(lèi)似.

但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫(xiě)成 或 .在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過(guò)來(lái)用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說(shuō)明這里 與 是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.

例2、自行車(chē)保管站在某個(gè)星期日保管的自行車(chē)共有3500輛次,其中變速車(chē)保管費(fèi)是每輛一次0.5元,一般車(chē)保管費(fèi)是每次一輛0.3元.

(1)若設(shè)一般車(chē)停放的輛次數(shù)為x,總的保管費(fèi)收入為y元,試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;

(2)若估計(jì)前來(lái)停放的3500輛次自行車(chē)中,變速車(chē)的輛次不小于25%,但不大于40%,試求該保管站這個(gè)星期日收入保管費(fèi)總數(shù)的范圍.

解:(1)

(x是正整數(shù),

(2)若變速車(chē)的輛次不小于25%,但不大于40%,

收入在1225元至1330元之間

總結(jié):對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,應(yīng)使得實(shí)際問(wèn)題有意義.這樣,就要求聯(lián)系實(shí)際,具體問(wèn)題具體分析.

對(duì)于函數(shù) ,當(dāng)自變量 時(shí),相應(yīng)的函數(shù)y的值是 .60叫做這個(gè)函數(shù)當(dāng) 時(shí)的函數(shù)值.

例3、求下列函數(shù)當(dāng) 時(shí)的函數(shù)值:

(1)   (2)

(3)   (4)

解:1)當(dāng) 時(shí),

(2)當(dāng) 時(shí),

(3)當(dāng) 時(shí),

(4)當(dāng) 時(shí),

注:本例既鍛煉了學(xué)生的計(jì)算能力,又創(chuàng)設(shè)了情境,讓學(xué)生體會(huì)對(duì)于x的每一個(gè)值,y都有確定的值與之對(duì)應(yīng).以此加深對(duì)函數(shù)的理解.

(二)小結(jié):

這節(jié)課,我們進(jìn)一步地研究了有關(guān)函數(shù)的概念.在研究函數(shù)關(guān)系時(shí)首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值.另外,對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,要具體問(wèn)題具體分析.

人教版九年級(jí)數(shù)學(xué)上冊(cè)教案:直接開(kāi)平方法

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問(wèn)題.

提出問(wèn)題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開(kāi)平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過(guò)根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題.

問(wèn)題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

問(wèn)題2:目前我們都學(xué)過(guò)哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過(guò)哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開(kāi)平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開(kāi)平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開(kāi)平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2 市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長(zhǎng)率.

分析:設(shè)每年人均住房面積增長(zhǎng)率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長(zhǎng)率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開(kāi)平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問(wèn):解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱(chēng)為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁(yè) 練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開(kāi)平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開(kāi)平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無(wú)解.

五、作業(yè)布置

2020北師大版九年級(jí)數(shù)學(xué)教案相關(guān)文章

九年級(jí)主題班會(huì)教案2020歸納集錦大全

九年級(jí)主題班會(huì)教案2020最新主題班會(huì)歸納

北師大版小學(xué)一年級(jí)數(shù)學(xué)上冊(cè)教案

北師大版一年級(jí)下冊(cè)數(shù)學(xué)教案

北師大版七年級(jí)下冊(cè)數(shù)學(xué)教案

北師大版小學(xué)數(shù)學(xué)二年級(jí)下冊(cè)教案參考

北師大版一年級(jí)數(shù)學(xué)下冊(cè)教案

部編版九年級(jí)下冊(cè)《不求甚解》教案范文3篇

北師大版數(shù)學(xué)手抄報(bào)

2020教師個(gè)人工作計(jì)劃總結(jié)學(xué)期教案大全

696717