八年級下冊數(shù)學(xué)測試卷及答案解析
很多學(xué)生到了八年級數(shù)學(xué)成績開始下降,其實很大一部分原因是沒有掌握好課本的基礎(chǔ)知識。下面是小編整理的八年級下冊數(shù)學(xué)測試卷及答案解析,歡迎閱讀分享,希望對大家有所幫助。
八年級下冊數(shù)學(xué)測試卷及答案
一、選擇題:
1.下列各式從左到右,是因式分解的是()
A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1
C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)2
【考點】因式分解的意義.
【分析】根據(jù)因式分解就是把一個多項式變形成幾個整式的積的形式的定義,利用排除法求解.
【解答】解:A、是多項式乘法,不是因式分解,故本選項錯誤;
B、結(jié)果不是積的形式,故本選項錯誤;
C、不是對多項式變形,故本選項錯誤;
D、運用完全平方公式分解x2﹣4x+4=(x﹣2)2,正確.
故選D.
【點評】這類問題的關(guān)鍵在于能否正確應(yīng)用分解因式的定義來判斷.
2.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()
A.B.C.D.
【考點】中心對稱圖形;軸對稱圖形.
【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.
【解答】解:A、不是軸對稱圖形,是中心對稱圖形;
B、是軸對稱圖形,也是中心對稱圖形;
C、是軸對稱圖形,不是中心對稱圖形;
D、是軸對稱圖形,不是中心對稱圖形.
故選B.
【點評】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.
3.下列多項式中不能用平方差公式分解的是()
A.a2﹣b2B.﹣x2﹣y2C.49x2﹣y2z2D.16m4n2﹣25p2
【考點】因式分解﹣運用公式法.
【分析】能用平方差公式分解的式子的特點是:兩項都是平方項,符號相反.
【解答】解:A、符合平方差公式的特點;
B、兩平方項的符號相同,不符和平方差公式結(jié)構(gòu)特點;
C、符合平方差公式的特點;
D、符合平方差公式的特點.
故選B.
【點評】本題考查能用平方差公式分解的式子的特點,兩平方項的符號相反是運用平方差公式的前提.
4.函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象如圖,則關(guān)于x的不等式kx+b>0的解集為()
A.x>0B.x<0C.x<2D.x>2
【考點】一次函數(shù)與一元一次不等式.
【分析】從圖象上得到函數(shù)的增減性及與x軸的交點的橫坐標(biāo),即能求得不等式kx+b>0的解集.
【解答】解:函數(shù)y=kx+b的圖象經(jīng)過點(2,0),并且函數(shù)值y隨x的增大而減小,
所以當(dāng)x<2時,函數(shù)值小于0,即關(guān)于x的不等式kx+b>0的解集是x<2.
故選C.
【點評】本題考查了一次函數(shù)與不等式(組)的關(guān)系及數(shù)形結(jié)合思想的應(yīng)用,注意幾個關(guān)鍵點(交點、原點等),做到數(shù)形結(jié)合.
5.使分式有意義的x的值為()
A.x≠1B.x≠2C.x≠1且x≠2D.x≠1或x≠2
【考點】分式有意義的條件.
【分析】根據(jù)分式有意義,分母不等于0列不等式求解即可.
【解答】解:由題意得,(x﹣1)(x﹣2)≠0,
解得x≠1且x≠2.
故選C.
【點評】本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.
6.下列是最簡分式的是()
A.B.C.D.
【考點】最簡分式.
【分析】先將選項中能化簡的式子進(jìn)行化簡,不能化簡的即為最簡分式,本題得以解決.
【解答】解:,無法化簡,,,
故選B.
【點評】本題考查最簡分式,解題的關(guān)鍵是明確最簡分式的定義.
7.如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點.已知A、B是兩格點,如果C也是圖中的格點,且使得△ABC為等腰三角形,則點C的個數(shù)是()
A.6B.7C.8D.9
【考點】等腰三角形的判定.
【專題】分類討論.
【分析】根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.
【解答】解:如上圖:分情況討論.
①AB為等腰△ABC底邊時,符合條件的C點有4個;
②AB為等腰△ABC其中的一條腰時,符合條件的C點有4個.
故選:C.
【點評】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實際條件的圖形,再利用數(shù)學(xué)知識來求解.數(shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.
8.若不等式組的解集是x<2,則a的取值范圍是()
A.a<2B.a≤2C.a≥2D.無法確定
【考點】解一元一次不等式組.
【專題】計算題.
【分析】解出不等式組的解集,與已知解集x<2比較,可以求出a的取值范圍.
【解答】解:由(1)得:x<2
由(2)得:x<a< p="">
因為不等式組的解集是x<2
∴a≥2
故選:C.
【點評】本題是已知不等式組的解集,求不等式中另一未知數(shù)的問題.可以先將另一未知數(shù)當(dāng)作已知處理,求出解集與已知解集比較,進(jìn)而求得零一個未知數(shù).
9.下列式子:(1);(2);(3);(4),其中正確的有()
A.1個B.2個C.3個D.4個
【考點】分式的基本性質(zhì).
【分析】根據(jù)分式的基本性質(zhì)作答.
【解答】解:(1),錯誤;
(2),正確;
(3)∵b與a的大小關(guān)系不確定,∴的值不確定,錯誤;
(4),正確.
故選B.
【點評】在分式中,無論進(jìn)行何種運算,如果要不改變分式的值,則所做變化必須遵循分式基本性質(zhì)的要求.
10.某煤礦原計劃x天生存120t煤,由于采用新的技術(shù),每天增加生存3t,因此提前2天完成,列出的方程為()
A.==﹣3B.﹣3
C.﹣3D.=﹣3
【考點】由實際問題抽象出分式方程.
【分析】設(shè)原計劃x天生存120t煤,則實際(x﹣2)天生存120t煤,等量關(guān)系為:原計劃工作效率=實際工作效率﹣3,依此可列出方程.
【解答】解:設(shè)原計劃x天生存120t煤,則實際(x﹣2)天生存120t煤,
根據(jù)題意得,=﹣3.
故選D.
【點評】本題考查由實際問題抽象出分式方程,關(guān)鍵設(shè)出天數(shù),以工作效率作為等量關(guān)系列方程.
二、填空題:
11.分解因式x2(x﹣y)+(y﹣x)=(x﹣y)(x+1)(x﹣1).
【考點】提公因式法與公式法的綜合運用.
【分析】把(x﹣y)看作一個整體并提取,然后再利用平方差公式繼續(xù)分解因式即可.
【解答】解:x2(x﹣y)+(y﹣x)
=x2(x﹣y)﹣(x﹣y)
=(x﹣y)(x2﹣1)
=(x﹣y)(x+1)(x﹣1).
故答案為:(x﹣y)(x+1)(x﹣1).
【點評】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時因式分解要徹底,直到不能分解為止.
12.當(dāng)x=﹣2時,分式無意義.若分式的值為0,則a=﹣2.
【考點】分式的值為零的條件;分式有意義的條件.
【分析】根據(jù)分母為零,分式無意義;分母不為零,分式有意義,分子為零分母不為零分式的值為零,可得答案.
【解答】解:∵分式無意義,
∴x+2=0,
解得x=﹣2.
∵分式的值為0,
∴,
解得a=﹣2.
故答案為:=﹣2,﹣2.
【點評】本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:分式無意義?分母為零;分式有意義?分母不為零;分式值為零?分子為零且分母不為零.
13.如圖,在△ABC中,BC邊上的垂直平分線DE交邊BC于點D,交邊AB于點E.若△EDC的周長為24,△ABC與四邊形AEDC的周長之差為12,則線段DE的長為6.
【考點】線段垂直平分線的性質(zhì).
【專題】計算題;壓軸題.
【分析】運用線段垂直平分線定理可得BE=CE,再根據(jù)已知條件“△EDC的周長為24,△ABC與四邊形AEDC的周長之差為12”表示出線段之間的數(shù)量關(guān)系,聯(lián)立關(guān)系式后求解.
【解答】解:∵DE是BC邊上的垂直平分線,
∴BE=CE.
∵△EDC的周長為24,
∴ED+DC+EC=24,①
∵△ABC與四邊形AEDC的周長之差為12,
∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12,
∴BE+BD﹣DE=12,②
∵BE=CE,BD=DC,
∴①﹣②得,DE=6.
故答案為:6.
【點評】此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段的垂直平分線上的點到線段的兩個端點的距離相等.
14.若4a4﹣ka2b+25b2是一個完全平方式,則k=±20.
【考點】完全平方式.
【分析】根據(jù)4a4﹣ka2b+25b2是一個完全平方式,利用此式首末兩項是2a2和5b這兩個數(shù)的平方,那么中間一項為加上或減去2a2和5b積的2倍,進(jìn)而求出k的值即可.
【解答】解:∵4a4﹣ka2b+25b2是一個完全平方式,
∴4a4﹣ka2b+25b2=(2a2±5b)2,
=4a4±20a2b+25b2.
∴k=±20,
故答案為:±20.
【點評】此題主要考查的是完全平方公式的應(yīng)用;兩數(shù)的平方和,再加上或減去它們積的2倍,就構(gòu)成了一個完全平方式.注意積的2倍的符號,避免漏解.
15.如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O(shè)為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為﹣.
【考點】扇形面積的計算.
【分析】連接OC,作OM⊥BC,ON⊥AC,證明△OMG≌△ONH,則S四邊形OGCH=S四邊形OMCN,求得扇形FOE的面積,則陰影部分的面積即可求得.
【解答】解:連接OC,作OM⊥BC,ON⊥AC.
∵CA=CB,∠ACB=90°,點O為AB的中點,
∴OC=AB=1,四邊形OMCN是正方形,OM=.
則扇形FOE的面積是:=.
∵OA=OB,∠AOB=90°,點D為AB的中點,
∴OC平分∠BCA,
又∵OM⊥BC,ON⊥AC,
∴OM=ON,
∵∠GOH=∠MON=90°,
∴∠GOM=∠HON,
則在△OMG和△ONH中,
,
∴△OMG≌△ONH(AAS),
∴S四邊形OGCH=S四邊形OMCN=()2=.
則陰影部分的面積是:﹣.
故答案為:﹣.
【點評】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△OMG≌△ONH,得到S四邊形OGCH=S四邊形OMCN是解題的關(guān)鍵.
三、解答題
16.(21分)(2016春?成都校級期中)(1)因式分解:2x2y﹣4xy2+2y3;
(2)解方程:=+;
(3)先化簡,再求值(﹣x+1)÷,其中;
(4)解不等式組,把解集在數(shù)軸上表示出來,且求出其整數(shù)解.
【考點】分式的化簡求值;提公因式法與公式法的綜合運用;解分式方程;在數(shù)軸上表示不等式的解集;解一元一次不等式組;一元一次不等式組的整數(shù)解.
【分析】(1)先提公因式,然后根據(jù)完全平方公式解答;
(2)去分母后將原方程轉(zhuǎn)化為整式方程解答.
(3)將括號內(nèi)統(tǒng)分,然后進(jìn)行因式分解,化簡即可;
(4)分別求出不等式的解集,找到公共部分,在數(shù)軸上表示即可.
【解答】解:(1)原式=2y(x2﹣2xy+y2)
=2y(x﹣y)2;
(2)去分母,得(x﹣2)2=(x+2)2+16
去括號,得x2﹣4x+4=x2+4x+4+16
移項合并同類項,得﹣8x=16
系數(shù)化為1,得x=﹣2,
當(dāng)x=﹣2時,x+2=0,則x=﹣2是方程的增根.
故方程無解;
(3)原式=[﹣]?
=?
=?
=﹣,
當(dāng)時,原式=﹣=﹣=﹣;
(4)
由①得x<2,
由②得x≥﹣1,
不等式組的解集為﹣1≤x<2,
在數(shù)軸上表示為
.
【點評】本題考查的是分式的化簡求值、因式分解、解一元一次不等式組、在數(shù)軸上表示不等式組的解集,考查內(nèi)容較多,要細(xì)心解答.
17.在如圖所示的直角坐標(biāo)系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標(biāo)是(﹣3,﹣1).
(1)將△ABC沿y軸正方向平移3個單位得到△A1B1C1,畫出△A1B1C1,并寫出點B1坐標(biāo);
(2)畫出△A1B1C1以點O為旋轉(zhuǎn)中心、順時針方向旋轉(zhuǎn)90度的△A2B2C2,并求出點C1經(jīng)過的路徑的長度.
【考點】作圖﹣旋轉(zhuǎn)變換;作圖﹣平移變換.
【分析】(1)分別作出點A、B、C沿y軸正方向平移3個單位得到對應(yīng)點,順次連接即可得;
(2)分別作出點A、B、C以點O為旋轉(zhuǎn)中心、順時針方向旋轉(zhuǎn)90度得到對應(yīng)點,順次連接即可得,再根據(jù)弧長公式計算即可.
【解答】解:(1)如圖,△A1B1C1即為所求作三角形,點B1坐標(biāo)為(﹣2,﹣1);
(2)如圖,△A2B2C2即為所求作三角形,
∵OC==,
∴==π.
【點評】本題考查了平移作圖、旋轉(zhuǎn)作圖,解答本題的關(guān)鍵是熟練平移的性質(zhì)和旋轉(zhuǎn)的性質(zhì)及弧長公式.
18.小明和同學(xué)一起去書店買書,他們先用15元買了一種科普書,又用15元買了一種文學(xué)書,科普書的價格比文學(xué)書的價格高出一半,因此他們買的文學(xué)書比科普書多一本,這種科普和文學(xué)書的價格各是多少?
【考點】分式方程的應(yīng)用.
【專題】應(yīng)用題.
【分析】根據(jù)題意,設(shè)科普和文學(xué)書的價格分別為x和y元,則根據(jù)“科普書的價格比文學(xué)書的價格高出一半,買的文學(xué)書比科普書多一本“列方程組即可求解.
【解答】解:設(shè)科普和文學(xué)書的價格分別為x和y元,
則有:,
解得:x=7.5,y=5,
即這種科普和文學(xué)書的價格各是7.5元和5元.
【點評】本題考查分式方程的應(yīng)用,同時考查學(xué)生理解題意的能力,關(guān)鍵是根據(jù)“科普書的價格比文學(xué)書的價格高出一半,買的文學(xué)書比科普書多一本“列出方程組.
19.已知關(guān)于x的方程=3的解是正數(shù),求m的取值范圍.
【考點】解分式方程;解一元一次不等式.
【專題】計算題.
【分析】先解關(guān)于x的分式方程,求得x的值,然后再依據(jù)“解是正數(shù)”建立不等式求m的取值范圍.
【解答】解:原方程整理得:2x+m=3x﹣6,
解得:x=m+6.
因為x>0,所以m+6>0,即m>﹣6.①
又因為原式是分式方程,所以x≠2,即m+6≠2,所以m≠﹣4.②
由①②可得,m的取值范圍為m>﹣6且m≠﹣4.
【點評】本題主要考查了分式方程的解法及其增根產(chǎn)生的原因.解答本題時,易漏掉m≠4,這是因為忽略了x﹣2≠0這個隱含的條件而造成的,這應(yīng)引起同學(xué)們的足夠重視.
20.(12分)(2016?河南模擬)問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足∠BAD=2∠EAF關(guān)系時,仍有EF=BE+FD.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù):=1.41,=1.73)
【考點】四邊形綜合題.
【分析】【發(fā)現(xiàn)證明】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADG≌△ABE,則GF=BE+DF,只要再證明△AFG≌△AFE即可.
【類比引申】延長CB至M,使BM=DF,連接AM,證△ADF≌△ABM,證△FAE≌△MAE,即可得出答案;
【探究應(yīng)用】利用等邊三角形的判定與性質(zhì)得到△ABE是等邊三角形,則BE=AB=80米.把△ABE繞點A逆時針旋轉(zhuǎn)150°至△ADG,只要再證明∠BAD=2∠EAF即可得出EF=BE+FD.
【解答】【發(fā)現(xiàn)證明】證明:如圖(1),∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
,
∴△AFG≌△AFE(SAS),
∴GF=EF,
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF;
【類比引申】∠BAD=2∠EAF.
理由如下:如圖(2),延長CB至M,使BM=DF,連接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
故答案是:∠BAD=2∠EAF.
【探究應(yīng)用】如圖3,把△ABE繞點A逆時針旋轉(zhuǎn)150°至△ADG,連接AF,過A作AH⊥GD,垂足為H.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等邊三角形,
∴BE=AB=80米.
根據(jù)旋轉(zhuǎn)的性質(zhì)得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即點G在CD的延長線上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵AH=80×=40,HF=HD+DF=40+40(﹣1)=40
故∠HAF=45°,
∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°
從而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°
又∵∠BAD=150°=2×75°=2∠EAF
∴根據(jù)上述推論有:EF=BE+DF=80+40(﹣1)≈109(米),即這條道路EF的長約為109米.
【點評】此題主要考查了四邊形綜合題,關(guān)鍵是正確畫出圖形,證明∠BAD=2∠EAF.此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.
八年級數(shù)學(xué)怎么快速提高
一、做好數(shù)學(xué)課前預(yù)習(xí)工作
很多學(xué)生在數(shù)學(xué)課前預(yù)習(xí)的習(xí)慣,這樣會造成課上學(xué)的不太懂、課后翻書找不到的這樣的情況。要有針對性的數(shù)學(xué)學(xué)習(xí)方法。根據(jù)自己的情況總結(jié)不足,有針對性的調(diào)整學(xué)習(xí)方法。總之,只要有了認(rèn)真的學(xué)習(xí)態(tài)度,有了學(xué)習(xí)的決心,再加上正確務(wù)實的數(shù)學(xué)學(xué)習(xí)方法,快速提高數(shù)學(xué)成績不是問題。
二、學(xué)會記筆記
記筆記可能很多家長覺得不難,而且學(xué)生是有記筆記的,那么為什么數(shù)學(xué)成績還是不好呢?要注重思考和歸納總結(jié)。老師講過的題目不能僅僅是聽懂,還要會;另外對于上課沒聽懂的數(shù)學(xué)題一定要記在數(shù)學(xué)筆記上。
1、課前預(yù)習(xí)不會的要記在數(shù)學(xué)筆記上,課上可以與老師交流;
2、上課時,記下老師講的重點,也可把模糊的數(shù)學(xué)知識點記住。
3、課后筆記則是對課上不理解的知識點進(jìn)行整理,并且先根據(jù)自己的筆記去嘗試是否能解開不懂的地方,若不能則需要及時的詢問老師,養(yǎng)成不懂就問的好習(xí)慣。
三、能找出錯誤的數(shù)學(xué)點
學(xué)生們在提高數(shù)學(xué)成績時,會找出學(xué)生作業(yè)或考試中的錯誤點,讓自己能清楚知道自己哪里做錯了,并且能夠改正自己的錯誤。
初二數(shù)學(xué)學(xué)習(xí)技巧
技巧1:要熟記數(shù)學(xué)題型
初二數(shù)學(xué)大大小小有幾十個知識點,每個知識點都有對應(yīng)的題目。相關(guān)的題目無非就是這個知識點的靈活運用,掌握了題型就可以做到舉一反三。與其做十道題,還不如熟練掌握一道題,如果你對數(shù)學(xué)不那么感興趣,背題可以使你免受練習(xí)之苦,還能更有效率的增強考試成績。只要記下足夠的題型,就可以使你的分?jǐn)?shù)上一個層次。
技巧2:注重課本知識要點
要吃透課本,課本上重要的定義,以及想數(shù)學(xué)公式的由來和演變、知識點的應(yīng)用。這是較起碼的要求,為下一步做題“回歸課本”打好基礎(chǔ)?;A(chǔ)差先記數(shù)學(xué)的知識點。手邊常備一本小手冊,用零碎時間看一看,只有大腦記住那個知識點,遇到有關(guān)這個知識點的題才能解決。所以基礎(chǔ)差的同學(xué)還是要下點功夫。只要堅持,有耐心,努力的話,兩個月時間之內(nèi)數(shù)學(xué)成績會有大幅度增強的。
技巧3:對錯題進(jìn)行糾錯整理
如果你的數(shù)學(xué)成績不是太差,也就是說考試能及格的可以把注意力放在背題上,但遇到想不出來的知識點,還是要鞏固一下。對于經(jīng)常出錯的題目,可以整理成一個糾錯本,對錯誤的點,錯誤原因標(biāo)注清楚。同時提醒自己以后遇到這種類型的題目應(yīng)該注意什么細(xì)節(jié),進(jìn)步其實就是減小自己犯錯的概率,把該拿的分?jǐn)?shù)要拿下來。
初二數(shù)學(xué)注意事項
1、按部就班。初二數(shù)學(xué)是環(huán)環(huán)相扣的一門學(xué)科,哪一個環(huán)節(jié)脫節(jié)都會影響整個學(xué)習(xí)的進(jìn)程。所以,平時學(xué)習(xí)不應(yīng)貪快,要一章一章過關(guān),不要輕易留下自己不明白或者理解不深刻的問題。
2、強調(diào)理解。概念、定理、公式要在理解的基礎(chǔ)上記憶。我的經(jīng)驗是,每新學(xué)一個定理,便嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
3、基本訓(xùn)練。學(xué)習(xí)初二數(shù)學(xué)是不能缺少訓(xùn)練的,平時多做一些難度適中的練習(xí),當(dāng)然莫要陷入死鉆難題的誤區(qū),要熟悉??嫉念}型,訓(xùn)練要做到有的放矢。