不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 >

高考數(shù)學(xué)的解題技巧有哪些

時(shí)間: 維維20 分享

在緊張的高考數(shù)學(xué)復(fù)習(xí)過(guò)程中,你掌握了哪些答題技巧了呢?哪些技巧你是很熟悉的呢?那么接下來(lái)給大家分享一些關(guān)于高考數(shù)學(xué)的解題技巧有哪些,希望對(duì)大家有所幫助。

高考數(shù)學(xué)的解題技巧有哪些

1、提前進(jìn)入數(shù)學(xué)情境

考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,提前進(jìn)入“角色”,通過(guò)清點(diǎn)用具、暗示重要知識(shí)和方法、提醒常見(jiàn)解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤等,進(jìn)行針對(duì)性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強(qiáng)信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。

2、“內(nèi)緊外松”

集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過(guò)重,則會(huì)走向反面,形成怯場(chǎng),產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。

3、沉著應(yīng)戰(zhàn)

良好的開端是成功的一半,從考試的心理角度來(lái)說(shuō),這確實(shí)是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個(gè)良好的開端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見(jiàn)機(jī)攀高。

4、“六先六后”

在通覽全卷,將簡(jiǎn)單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場(chǎng)解題能力的黃金季節(jié)了,這時(shí),考生可依自己的解題習(xí)慣和基本功,結(jié)合整套試題結(jié)構(gòu),選擇執(zhí)行“六先六后”的戰(zhàn)術(shù)原則。

1).先易后難。就是先做簡(jiǎn)單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過(guò)啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

2).先熟后生。通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處,對(duì)后者,不要驚慌失措,應(yīng)想到試題偏難對(duì)所有考生也難,通過(guò)這種暗示,確保情緒穩(wěn)定,對(duì)全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。

3).先同后異。先做同科同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過(guò)急、過(guò)頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力。

4).先小后大。小題一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過(guò),應(yīng)爭(zhēng)取在大題之前盡快解決,從而為解決大題贏得時(shí)間,創(chuàng)造一個(gè)寬松的心理基矗5.先點(diǎn)后面。近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問(wèn)漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問(wèn)題的解決又為后面問(wèn)題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營(yíng),由點(diǎn)到面6.先高后低。即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。

5、一“慢”一“快”

有些考生只知道考場(chǎng)上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說(shuō),審題要慢,解答要快。審題是整個(gè)解題過(guò)程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識(shí),為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。

6、確保運(yùn)算準(zhǔn)確

數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大小26個(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說(shuō),就只好舍快求對(duì)了,因?yàn)榻獯鸩粚?duì),再快也無(wú)意義。速完成。

7、規(guī)范書寫

考試的又一個(gè)特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會(huì)而且要對(duì)、對(duì)且全,全而規(guī)范。會(huì)而不對(duì),令人惋惜;對(duì)而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因?yàn)樽舟E潦草,會(huì)使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過(guò)硬、“感情分”也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”?!皶鴮懸ふ?,卷面能得分”講的也正是這個(gè)道理。

8、講究方法

會(huì)做的題目當(dāng)然要力求做對(duì)、做全、得滿分,而更多的問(wèn)題是對(duì)不能全面完成的題目如何分段得分。下面有兩種常用方法。

1).缺步解答。對(duì)一個(gè)疑難問(wèn)題,確實(shí)啃不動(dòng)時(shí),一個(gè)明智的解題方法是:將它劃分為一個(gè)個(gè)子問(wèn)題或一系列的步驟,先解決問(wèn)題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語(yǔ)言譯成符號(hào)語(yǔ)言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動(dòng)點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡(jiǎn)單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。

2).跳步解答。解題過(guò)程卡在一中間環(huán)節(jié)上時(shí),可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過(guò)渡環(huán)節(jié)。若因時(shí)間限制,中間結(jié)論來(lái)不及得到證實(shí),就只好跳過(guò)這一步,寫出后繼各步,一直做到底;另外,若題目有兩問(wèn),第一問(wèn)做不上,可以第一問(wèn)為“已知”,完成第二問(wèn),這都叫跳步解答。也許后來(lái)由于解題的正遷移對(duì)中間步驟想起來(lái)了,或在時(shí)間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。

9、以退求進(jìn)

發(fā)散一般對(duì)于一個(gè)較一般的問(wèn)題,若一時(shí)不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等??傊说揭粋€(gè)你能夠解決的程度上,通過(guò)對(duì)“特殊”的思考與解決,啟發(fā)思維,達(dá)到對(duì)“一般”的解決。

10、執(zhí)果索因

對(duì)一個(gè)問(wèn)題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。

11、解決探索性問(wèn)題

對(duì)探索性問(wèn)題,不必追求結(jié)論的“是”與“否”、“有”與“無(wú)”,可以一開始,就綜合所有條件,進(jìn)行嚴(yán)格的推理與討論,則步驟所至,結(jié)論自明。

12、面—點(diǎn)—線

解決應(yīng)用性問(wèn)題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過(guò)冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題。當(dāng)然,求解過(guò)程和結(jié)果都不能離開實(shí)際背景。

學(xué)習(xí)數(shù)學(xué)的學(xué)習(xí)建議

一、閱讀理解。目前初中學(xué)生學(xué)習(xí)數(shù)學(xué)存在一個(gè)嚴(yán)重的問(wèn)題就是不善于讀數(shù)學(xué)教材,他們往往是死記硬背。重視閱讀方法對(duì)提高初中學(xué)生的學(xué)習(xí)能力是至關(guān)重要的。新學(xué)一個(gè)章節(jié)內(nèi)容,先粗粗讀一遍,即瀏覽本章節(jié)所學(xué)內(nèi)容的枝干,然后一邊讀一邊勾,粗略懂得教材的內(nèi)容及其重點(diǎn)、難點(diǎn)所在,對(duì)不理解的地方打上記號(hào)。然后細(xì)細(xì)地讀,即根據(jù)每章節(jié)后的學(xué)習(xí)要求,仔細(xì)閱讀教材內(nèi)容,理解數(shù)學(xué)概念、公式、法則、思想方法的實(shí)質(zhì)及其因果關(guān)系,把握重點(diǎn)、突破難點(diǎn)。再次帶著研究者的態(tài)度去讀,即帶著發(fā)展的觀點(diǎn)研討知識(shí)的來(lái)龍去脈、結(jié)構(gòu)關(guān)系、編排意圖,并歸納要點(diǎn),把書讀懂,并形成知識(shí)網(wǎng)絡(luò),完善認(rèn)識(shí)結(jié)構(gòu),當(dāng)學(xué)生掌握了這三種讀法,形成習(xí)慣之后,就能從本質(zhì)上改變其學(xué)習(xí)方式,提高學(xué)習(xí)效率了。

二、提高聽(tīng)課質(zhì)量要培養(yǎng)會(huì)聽(tīng)課,聽(tīng)懂課的習(xí)慣。注意聽(tīng)教師每節(jié)課強(qiáng)調(diào)的學(xué)習(xí)重點(diǎn),注意聽(tīng)對(duì)定理、公式、法則的引入與推導(dǎo)的方法和過(guò)程,注意聽(tīng)對(duì)例題關(guān)鍵部分的提示和處理方法,注意聽(tīng)對(duì)疑難問(wèn)題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點(diǎn),沿著知識(shí)的發(fā)生發(fā)展的過(guò)程來(lái)聽(tīng)課,不僅能提高聽(tīng)課效率,而且能由“聽(tīng)會(huì)”轉(zhuǎn)變?yōu)椤皶?huì)聽(tīng)”。

三、有疑必問(wèn)是提高學(xué)習(xí)效率的有效辦法學(xué)習(xí)過(guò)程中,遇到疑問(wèn),抓緊時(shí)間問(wèn)老師和同學(xué),把沒(méi)有弄懂,沒(méi)有學(xué)明白的知識(shí),最短的時(shí)間內(nèi)掌握。建立自己的錯(cuò)題本,經(jīng)常翻閱,提醒自己同樣的錯(cuò)誤不要犯第二次。從而提高學(xué)習(xí)效率。

初中數(shù)學(xué)考試常用解題技巧

一、認(rèn)真分析問(wèn)題,找解題準(zhǔn)切入點(diǎn)

由于數(shù)學(xué)問(wèn)題紛繁復(fù)雜,學(xué)生容易受定勢(shì)思維的影響,這樣就會(huì)響解題思路造成很大的影響。例如:AB=DC,AC=DB。求證:∠A=∠D。

此題是一道比較經(jīng)典的證明全等的題型,主要是對(duì)學(xué)生對(duì)已知條件整合能力和觀察識(shí)圖能力的鍛煉。然而,從圖形的直觀角度來(lái)證明∠AOC=∠DOB,這樣的思路只會(huì)落入題目所設(shè)下的陷阱。

二、發(fā)揮想象力,借助面積出奇制勝

面積問(wèn)題是數(shù)學(xué)中常出現(xiàn)的問(wèn)題,在面積定義及相關(guān)規(guī)律中,蘊(yùn)含著深刻的數(shù)學(xué)思想,如果學(xué)生能充分了解其中的韻味,能夠熟練的掌握其中的數(shù)學(xué)論證思維,就有可能在其他數(shù)學(xué)問(wèn)題中借助面積,出奇制勝順利實(shí)現(xiàn)解題。

例1:若E、F分別是矩形ABCD邊AB、CD的中點(diǎn),且矩形EFDA與矩形ABCD相似,則矩形ABCD的寬與長(zhǎng)之比為。

由上題已知信息可知,矩形ABCD的寬AD與AB的比,就是矩形EFDA與矩形ABCD的相似比。解:設(shè)矩形EFDA與矩形ABCD的相似比為k。因?yàn)镋、F分別是矩形ABCD的中點(diǎn)所以S矩形ABCD=2S矩形EFDA所以S矩形EFDAS矩形ABCD=k2=12。所以k=1∶2。即矩形ABCD的寬與長(zhǎng)之比為1∶2;故選(C)。

此題我們利用了相似多邊形面積的比等于相似比平方,這一性質(zhì),巧妙解決相似矩形中的長(zhǎng)與寬比的問(wèn)題。事實(shí)上,借助面積,形成解題思路的過(guò)程,就是學(xué)生思維轉(zhuǎn)換的過(guò)程。

三、巧取特殊值,以簡(jiǎn)代繁

初中數(shù)學(xué)雖然是基礎(chǔ)數(shù)學(xué),但是這并不意味著就沒(méi)有難度,特別是在素質(zhì)教育下,從培養(yǎng)學(xué)生綜合素質(zhì)能力的角度出發(fā),初中數(shù)學(xué)越來(lái)越重視數(shù)學(xué)思維的培養(yǎng),因此在很多數(shù)學(xué)問(wèn)題的設(shè)置上,都進(jìn)行了相當(dāng)難度的調(diào)整,使得數(shù)學(xué)問(wèn)題顯得較為繁雜,單一的思維或者解題方式,在有些題目面前會(huì)顯得較為艱難。如有些數(shù)學(xué)問(wèn)題是在一定的范圍內(nèi)研究它的性質(zhì),如果從所有的值去逐一考慮,那么問(wèn)題將不勝其煩甚至陷入困境。在這種情況下,避開常規(guī)解法,跳出既定數(shù)學(xué)思維,就成了解題的關(guān)鍵。

例2:分解因式:x2+2xy-8y2+2x+14y-3。

思路分析:本題是二元多項(xiàng)式,從常規(guī)思路進(jìn)行解題也未嘗不可,但是從鍛煉學(xué)生思維能力的角度出發(fā),教師可以在立足常規(guī)解法的基礎(chǔ)上,引導(dǎo)學(xué)生進(jìn)行其他方面解題思路的探索。如從巧取特值的角度出發(fā),把其中的一個(gè)未知數(shù)設(shè)為0,則可以暫時(shí)隱去這個(gè)未知數(shù),而就另一個(gè)未知數(shù)的式子來(lái)分解因式,達(dá)到化二元為一元的目的。

解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)??芍?×4+(-2)×1正好等于原式中xy項(xiàng)的系數(shù)。因此,綜合起來(lái)有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。

其實(shí),用特殊值法,也叫取零法。這種方法在因式分解中可以發(fā)揮很大的作用,幫助學(xué)生找到其他的解題思路。一般來(lái)說(shuō)其步驟是:A.把多項(xiàng)式中的一個(gè)字母設(shè)為0所得的結(jié)果分解因式,B.把多項(xiàng)中的另一個(gè)字母設(shè)為0所得的結(jié)果分解因式,C.把上兩步分解的結(jié)果綜合起來(lái),得出原多項(xiàng)式的分解結(jié)果。但要注意:兩次分解的一次因式的常數(shù)項(xiàng)必須相等。否則,在綜合這兩步的結(jié)果時(shí)就無(wú)所適從了。

四、巧妙轉(zhuǎn)換,過(guò)渡求解法

在解數(shù)學(xué)題時(shí),即要對(duì)已知的條件進(jìn)行全面分析,還要善于將題目中的隱性條件挖掘出來(lái),將數(shù)學(xué)中各知識(shí)之間的聯(lián)系巧妙的運(yùn)用起來(lái),用全面、全新的視角來(lái)解決問(wèn)題。

例如:已知:AB為半圓的直徑,其長(zhǎng)度為40 cm,點(diǎn)C、D是該半圓的三等分點(diǎn),求弦AC、AD與弧CD所圍成的圖形的面積。

本題需要解出的是一個(gè)不規(guī)則圖形的面積,可能大多數(shù)同學(xué)的思維就是將CD連結(jié)起來(lái),將其轉(zhuǎn)變?yōu)橐粋€(gè)角形和弓形,兩者面積之和就為該題需要解決的問(wèn)題。

綜上所述,數(shù)學(xué)的解題方法是隨著對(duì)數(shù)學(xué)對(duì)象的研究的深入而發(fā)展起來(lái)的。教師鉆研習(xí)題、精通解題方法,可以促進(jìn)教師進(jìn)一步熟練地掌握中學(xué)數(shù)學(xué)教材,練好解題的基本功,提高解題技巧,積累教學(xué)資料,提高業(yè)務(wù)水平和教學(xué)能力。初中數(shù)學(xué)解題存在很強(qiáng)的靈活性。有的數(shù)學(xué)題不只一種解法,而有多種解法,有的數(shù)學(xué)題用常規(guī)方法解決不了,要用特殊方法。因此,解數(shù)學(xué)題要注意它的靈活性和技巧性。解題技巧在升學(xué)考試中至關(guān)重要,不能忽視。初中數(shù)學(xué)教師要注意對(duì)解題技巧的鉆研,并鼓勵(lì)學(xué)生發(fā)散思維,尋找解題技巧,提高解題效率,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的能力。


高考數(shù)學(xué)的解題技巧有哪些相關(guān)文章:

高考數(shù)學(xué)6大解答題技巧

高考數(shù)學(xué)選擇題答題技巧匯總大全

高考數(shù)學(xué)復(fù)習(xí)必看的六個(gè)答題技巧

2020高考數(shù)學(xué)解題技巧大全

高考數(shù)學(xué)考試技巧有哪些

高考數(shù)學(xué)答題技巧有哪些介紹

高考數(shù)學(xué)常考題型答題技巧與方法有哪些

2020高考數(shù)學(xué)選擇題解題技巧有哪些

高考數(shù)學(xué)常用答題技巧及考試技巧

832332