人教版五年級數(shù)學知識點梳理
天才就是勤奮曾經(jīng)有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是小編給大家整理的一些五年級數(shù)學的知識點,希望對大家有所幫助。
小學五年級上冊數(shù)學知識點大全
第一單元《小數(shù)乘法》知識點
一、小數(shù)乘整數(shù) (利用因數(shù)的變化引起積的變化規(guī)律來計算小數(shù)乘法)
知識點一:
1、計算小數(shù)加法先把小數(shù)點對齊,再把相同數(shù)位上的數(shù)相加
2、計算小數(shù)乘法末尾對齊,按整數(shù)乘法法則進行計算。
知識點二:
積中小數(shù)末尾有0的乘法。 先計算出小數(shù)乘整數(shù)的乘積后,積的小數(shù)末尾出現(xiàn)0 ,要再根據(jù)小數(shù)的性質(zhì)去掉小數(shù)末尾的0。如:3.60 “0” 應劃去
知識點三:
如果乘得的積的小數(shù)位數(shù)不夠要在前面用0補足,再點上小數(shù)點。如0.02×2=0.04
知識點四:
計算整數(shù)因數(shù)末尾有0的小數(shù)乘法時,要把整數(shù)數(shù)位中不是0的最右側(cè)數(shù)字與小數(shù)的末尾對齊。
思考:
小數(shù)乘整數(shù)與整數(shù)乘整數(shù)有什么不同?
1、小數(shù)乘整數(shù)中有一個因數(shù)是小數(shù),所以積一般來說也是小數(shù)。
2 小數(shù)乘法中積的小暑部分末尾如有0可以根據(jù)小數(shù)的基本性質(zhì)去掉小數(shù)末尾的0而整數(shù)乘法中是不能去掉的。
二、小數(shù)乘小數(shù)
知識點一:
因數(shù)與積的小數(shù)位數(shù)的關(guān)系:因數(shù)中共有幾位小數(shù),積中就有幾位小數(shù)。
知識點二:
小數(shù)乘法的一般計算方法:
先按整數(shù)乘法算出積,再給積點上小數(shù)點(看因數(shù)中一共有幾位小數(shù),就從積的右邊起輸出幾位,點上小數(shù)點。)乘得的積的小數(shù)位數(shù)不夠要在積的前面用0補足,在點小數(shù)點。
知識點三:
小數(shù)乘法的驗算方法
1、把因數(shù)的位置交換相乘
2、用計算器來驗算
三、積的近似數(shù)
知識點一:
先算出積,然后看要保留數(shù)位的下一位,再按四舍五入法求出結(jié)果,用約等號表示。
知識點二:
如果求得的近似數(shù)所求數(shù)位的數(shù)字是9而后一位數(shù)字又大于5需要進1,這是就要依次進一用0占位。如6.597 保留兩位為6.60
四、連乘、乘加、乘減
知識點一:
小數(shù)乘法要按照從左到右的順序計算
知識點二:
小數(shù)的乘加運算與整數(shù)的乘加運算順序相同。先乘法,后加法
整數(shù)乘法的交換律、結(jié)合律和分配律,對于小數(shù)乘法也適用。
人教版五年級數(shù)學下冊知識點
知識點概括總結(jié):
1.軸對稱:
如果一個圖形沿一條直線折疊,直線兩側(cè)的圖形能夠互相重合,這個圖形就叫做軸對稱圖形,這時,我們也說這個圖形關(guān)于這條直線(成軸)對稱。
對稱軸:折痕所在的這條直線叫做對稱軸。如下圖所示:
小學數(shù)學知識點
2.軸對稱圖形的性質(zhì):把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點是對應點。軸對稱和軸對稱圖形的特性是相同的,對應點到對稱軸的距離都是相等的。
3.軸對稱的性質(zhì):經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。這樣我們就得到了以下性質(zhì):
(1)如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。
(2)類似地,軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(3)線段的垂直平分線上的點與這條線段的兩個端點的距離相等。
(4)對稱軸是到線段兩端距離相等的點的集合。
4.軸對稱圖形的作用:
(1)可以通過對稱軸的一邊從而畫出另一邊;
(2)可以通過畫對稱軸得出的兩個圖形全等。
5.因數(shù):整數(shù)B能整除整數(shù)A,A叫作B的倍數(shù),B就叫做A的因數(shù)或約數(shù)。在自然數(shù)的范圍內(nèi)例:在算式6÷2=3中,2、3就是6的因數(shù)。
6.自然數(shù)的因數(shù)(舉例):
6的因數(shù)有:1和6,2和3.
10的因數(shù)有:1和10,2和5.
15的因數(shù)有:1和15,3和5.
25的因數(shù)有:1和25,5.
7.因數(shù)的分類:除法里,如果被除數(shù)除以除數(shù),所得的商都是自然數(shù)而沒有余數(shù),就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。
我們將一個合數(shù)分成幾個質(zhì)數(shù)相乘的形式,這樣的幾個質(zhì)數(shù)叫做這個合數(shù)的質(zhì)因數(shù)。
8.倍數(shù):對于整數(shù)m,能被n整除(n/m),那么m就是n的倍數(shù)。如15能夠被3或5整除,因此15是3的倍數(shù),也是5的倍數(shù)。
一個數(shù)的倍數(shù)有無數(shù)個,也就是說一個數(shù)的倍數(shù)的集合為無限集。注意:不能把一個數(shù)單獨叫做倍數(shù),只能說誰是誰的倍數(shù)。
9.完全數(shù):完全數(shù)又稱完美數(shù)或完備數(shù),是一些特殊的自然數(shù)。它所有的真因子(即除了自身以外的約數(shù))的和(即因子函數(shù)),恰好等于它本身。
10.偶數(shù):整數(shù)中,能夠被2整除的數(shù),叫做偶數(shù)。
11.奇數(shù):整數(shù)中,能被2整除的數(shù)是偶數(shù),不能被2整除的數(shù)是奇數(shù),
12.奇數(shù)偶數(shù)的性質(zhì):
關(guān)于奇數(shù)和偶數(shù),有下面的性質(zhì):
(1)奇數(shù)不會同時是偶數(shù);兩個連續(xù)整數(shù)中必是一個奇數(shù)一個偶數(shù);
(2)奇數(shù)跟奇數(shù)和是偶數(shù);偶數(shù)跟奇數(shù)的和是奇數(shù);任意多個偶數(shù)的和都是偶數(shù);
(3)兩個奇(偶)數(shù)的差是偶數(shù);一個偶數(shù)與一個奇數(shù)的差是奇數(shù);
(4)除2外所有的正偶數(shù)均為合數(shù);
(5)相鄰偶數(shù)公約數(shù)為2,最小公倍數(shù)為它們乘積的一半。
小學五年級數(shù)學學習指導:有限小數(shù)、無限小數(shù)
小數(shù)【有限小數(shù)、無限小數(shù)】
一、分母是10、100、1000……的分數(shù)都可以用小數(shù)表示。一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……
二、整數(shù)和小數(shù)都是按照十進制計數(shù)法寫出的數(shù),個、十、百……以及十分之一、百分之一……都是計數(shù)單位。每相鄰兩個計數(shù)單位間的進率都是10。
三、每個計數(shù)單位所占的位置,叫做數(shù)位。數(shù)位是按照一定的順序排列的。
四、小數(shù)的性質(zhì):小數(shù)的末尾添上“0”或去掉“0”,小數(shù)的大小不變。
五、根據(jù)小數(shù)的性質(zhì),通??梢匀サ粜?shù)末尾的“0”,把小數(shù)化簡。
六、比較小數(shù)大小的一般方法:先比較整數(shù)部分的數(shù),再依次比較小數(shù)部分十分位上的數(shù),百分位上的數(shù),千分位上的數(shù),從左往右,如果哪個數(shù)位上的數(shù)大,這個小數(shù)就大。
七、把一個數(shù)改寫成用“萬”或“億”作單位的數(shù),在萬位或億位右邊點上小數(shù)點,再在數(shù)的后面添寫“萬”字或“億”字。
八、求小數(shù)近似數(shù)的一般方法:1先要弄清保留幾位小數(shù);2根據(jù)需要確定看哪一位上的數(shù);3用“四舍五入”的方法求得結(jié)果。
五年級數(shù)學知識點梳理相關(guān)文章: