中考數(shù)學(xué)知識點總結(jié)歸納免費下載
數(shù)學(xué)來源于生活,生活當(dāng)中有許多事情離不開數(shù)學(xué),那么你知道關(guān)于中考數(shù)學(xué)知識點有哪些嗎?以下是小編準(zhǔn)備的一些中考數(shù)學(xué)知識點總結(jié)歸納免費下載,僅供參考。
中考數(shù)學(xué)必考知識點
1有理數(shù)
1.有理數(shù)的加法運算
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好。
“大”減“小”是指絕對值的大小。
2.有理數(shù)的減法運算
減正等于加負,減負等于加正。
有理數(shù)的乘法運算符號法則。
同號得正異號負,一項為零積是零。
3.有理數(shù)混合運算的四種運算技巧
轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運算中,通常將小數(shù)轉(zhuǎn)化為分數(shù)進行約分計算。
湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結(jié)合為一組求解。
分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算。
巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便。
2圓
1.圓的對稱性
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉(zhuǎn)對稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
6.直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。
3數(shù)學(xué)定理
1.過兩點有且只有一條直線。
2.兩點之間線段最短。
3.同角或等角的補角相等。
4.同角或等角的余角相等。
5.過一點有且只有一條直線和已知直線垂直。
6.直線外一點與直線上各點連接的所有線段中,垂線段最短。
7.平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行。
9.同位角相等,兩直線平行。
10.內(nèi)錯角相等,兩直線平行。
11.同旁內(nèi)角互補,兩直線平行。
12.兩直線平行,同位角相等。
13.兩直線平行,內(nèi)錯角相等。
14.兩直線平行,同旁內(nèi)角互補。
15.定理三角形兩邊的和大于第三邊。
16.推論三角形兩邊的差小于第三邊。
17.三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°。
18.推論1直角三角形的兩個銳角互余。
19.推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
20.推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
4一次函數(shù)
在正比例函數(shù)時,x與y的商一定。在反比例函數(shù)時,x與y的積一定。在y=kx+b(k,b為常數(shù),k≠0)中,當(dāng)x增大m倍時,函數(shù)值y則增大m倍,反之,當(dāng)x減少m倍時,函數(shù)值y則減少m倍。
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)
5二次函數(shù)
1.二次函數(shù)性質(zhì)
特別地,二次函數(shù)(以下稱函數(shù))y=ax?+bx+c(a≠0)。
當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax?+bx+c=0(a≠0)
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。
函數(shù)與x軸交點的橫坐標(biāo)即為方程的根。
2.二次函數(shù)的值域
頂點坐標(biāo)(-b/2a,(4αc-b?)/4α)
二次函數(shù)的基本形式為y=ax?+bx+c(a≠0)
a>0時,拋物線開口向上,圖象在頂點上方,所以值域y≥(4ac-b?)/4a,即[(4ac-b?)/4a,+∞)。
a<0時,拋物線開口向下,函數(shù)的值域是(-∞,(4ac-b?)/4a]
當(dāng)b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax?+c(a≠0)。
6列方程(組)解應(yīng)用題
列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實際的一個重要方面。其具體步驟是:
⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。
⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。
⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。
⑸解方程及檢驗。
⑹答案。
中考數(shù)學(xué)考試技巧和方法
1做題原則一快一慢
這里所謂的“一快一慢”指的是審題要慢,做題要快。
題目本身實際上是這道題目的全部信息源,所以在審題的時候一定要逐字逐句地看清楚,力求從語法結(jié)構(gòu)、邏輯關(guān)系、數(shù)學(xué)含義等各方面真正地看清題意。有一些條件看起來沒有給出,但實際上細致審題你才會發(fā)現(xiàn),這樣就可以收集更多的已知信息,為做題正確率尋求保障。
當(dāng)思考出解題方法和思路之后,解答問題的時候就一定要簡明扼要、快速規(guī)范。這樣不僅給后面的題目贏得時間,更重要的是在保證踩到得分點上的基礎(chǔ)上盡量簡化解題步驟,可使得閱卷老師更加清晰地看出你的解題步驟。
2把握技巧,分段得分
對于中考數(shù)學(xué)中的難題,并不是說只讓成績優(yōu)秀的學(xué)生拿分而其他學(xué)生不得分。實際上,中考數(shù)學(xué)的大題采取的是“分段給分”的策略。簡單說來就是做對一步就給一步的分。這樣看來,我們確保會做的題目不丟分,部分理解的題目力爭多得分。
3答卷順序,三先三后
在瀏覽了試卷并做了簡單題的第一遍解答之后,我們的情緒就應(yīng)該穩(wěn)定了很多,現(xiàn)在對自己也會信心十足。我們要明白一點,對于數(shù)學(xué)學(xué)科而言,能夠拿到絕大部分分數(shù)就已經(jīng)實屬不易,所以要允許自己丟掉一些分數(shù)。在做題的時候我們要遵循“三先三后”的原則。
先易后難
這點很容易理解,就是我們要先做簡單題,然后再做復(fù)雜題。當(dāng)全部題目做完之后,如果還有時間,就再回來研究那些難題。當(dāng)然,在這里也不是說在做題的時候,稍微遇到一點難題就跳過去,這樣自己給自己遺留下的問題就太多了。也就違背了我們的原意。
先高后低
這里主要是指的倘若在時間不夠用的情況下,我們應(yīng)該遵守先做分數(shù)高的題目再做分數(shù)低的題目的順序。這樣能夠拿到更多的總得分。并且,高分題目一般是分段得分,第一個或者第二個問題一般來說不會特別慢,所以要盡可能地把這兩個問號做出來,從總體上說,這樣就會比拿出相應(yīng)時間來做一道分數(shù)低的題目“合算”。
先同后異
這里說的“先同后異”其實指的是,在大順序不變的情況下,可以把難題按照題目的大類進行區(qū)分,將同類型的題目放在一起考慮,因為這些題目所用到的知識點比較集中,在思考的時候就容易提高單位時間效益。
初三數(shù)學(xué)學(xué)習(xí)技巧
課后及時復(fù)習(xí)
寫完作業(yè)后對當(dāng)天老師講的內(nèi)容進行梳理,可以適當(dāng)?shù)刈?5分鐘左右的課外題。可以根據(jù)自己的需要選擇適合自己的課外書。其課外題內(nèi)容大概就是今天上的課。
學(xué)生應(yīng)該注意新舊知識之間的聯(lián)系
第一天和第二天的數(shù)學(xué)知識是初中的基礎(chǔ)。學(xué)生可以合理地分配時間在初中的初三復(fù)習(xí)這部分知識,同時學(xué)習(xí)新知識。新知識的學(xué)習(xí)通常是通過舊知識或以前學(xué)習(xí)知識的延續(xù)來引入的。因此,在學(xué)習(xí)數(shù)學(xué)的過程中,學(xué)生應(yīng)注意接觸新舊知識,鞏固和提高對數(shù)學(xué)知識的掌握程度。
總結(jié)數(shù)學(xué)知識
需要在初三學(xué)習(xí)和審查的數(shù)學(xué)知識更全面,更全面。在學(xué)習(xí)過程中,學(xué)生需要及時的知識進行總結(jié)和總結(jié),以加深對知識的記憶和理解,學(xué)會靈活運用知識點。濟南初中暑期輔導(dǎo)老師建議學(xué)生每周或每月總結(jié)數(shù)學(xué)知識,比較各知識點的實踐和差異,鞏固新知識和舊知識,更好地提高綜合應(yīng)用知識的能力。以更少的努力學(xué)習(xí)和解決問題。在回答數(shù)學(xué)綜合問題時,學(xué)生必須全面,多角度地思考,運用數(shù)學(xué)思維方法找出問題的條件和要求,探索正確的問題解決思路和解決問題的過程,并驗證問題?;卮?。
中考數(shù)學(xué)復(fù)習(xí)方法
重視數(shù)學(xué)基礎(chǔ)
就算再難的壓軸題也是有數(shù)學(xué)基礎(chǔ)知識堆砌而成的。因此要在復(fù)習(xí)過程中夯實數(shù)學(xué)基礎(chǔ),要注意知識的不斷深化,注意知識之間的內(nèi)在聯(lián)系和關(guān)系,將新知識及時納入已有知識體系,逐步形成和擴充知識結(jié)構(gòu)系統(tǒng),這樣在解題時,就能由題目所提供的信息,從記憶系統(tǒng)中檢索出有關(guān)信息,選出最佳組合信息,尋找解題途徑、優(yōu)化解題過程。
重視解題后反思
搞題海戰(zhàn)術(shù),一味的做題毫無意義,要養(yǎng)成解題后反思的習(xí)慣。反思自己的思維過程,反思知識點和解題技巧,反思多種解法的優(yōu)劣,反思各種方法的縱橫聯(lián)系。而總結(jié)出它所用到的數(shù)學(xué)思想方法,并把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。逐步學(xué)會觀察、試驗、分析、猜想、歸納、類比、聯(lián)想等思想方法,主動地發(fā)現(xiàn)問題和提出問題。
重視錯題本
準(zhǔn)備一本數(shù)學(xué)錯題本,把平時犯的錯誤記下來,找出"病因"開出"處方",并且經(jīng)常地拿出來看看、想想錯在哪里,為什么會錯,怎么改正,這樣到中考時你的數(shù)學(xué)就沒有什么"病例"了。我們要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,積累解題經(jīng)驗、總結(jié)解題思路、形成解題思想、催生解題靈感、掌握學(xué)習(xí)方法。
初中數(shù)學(xué)學(xué)習(xí)方法介紹
一、掌握預(yù)習(xí)學(xué)習(xí)方法,培養(yǎng)數(shù)學(xué)自學(xué)能力
預(yù)習(xí)就是在課前學(xué)習(xí)課本新知識的學(xué)習(xí)方法,要學(xué)好初中數(shù)學(xué),首先要學(xué)會預(yù)習(xí)數(shù)學(xué)新知識,因為預(yù)習(xí)是聽好課,掌握好課堂知識的先決條件,是數(shù)學(xué)學(xué)習(xí)中必不可少的環(huán)節(jié).預(yù)習(xí)可以用“一劃、二批、三試、四分”的預(yù)習(xí)方法.“一劃”就是圈劃知識要點,基本概念.“二批”就是把預(yù)習(xí)時的體會、見解以及自己暫時不能理解的內(nèi)容,批注在書的空白地方;“三試”就是嘗試性地做一些簡單的練習(xí),檢驗自己預(yù)習(xí)的效果.“四分”就是把自己預(yù)習(xí)的這節(jié)知識要點列出來,分出哪些是通過預(yù)習(xí)已掌握了的,哪些知識是自己預(yù)習(xí)不能理解掌握了的,需要在課堂學(xué)習(xí)中進一步學(xué)習(xí).
二、掌握課堂學(xué)習(xí)方法,提高課堂學(xué)習(xí)效果
課堂學(xué)習(xí)是學(xué)習(xí)過程中最基本,最重要的環(huán)節(jié),要堅持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以簡單扼要的方法記下聽課的要點,思維方法,以備復(fù)習(xí)、消化、再思考,但要以聽課為主,記錄為輔;
耳到:專心聽講,聽老師如何講課,如何分析、如何歸納總結(jié).另外,還要聽同學(xué)們的解答,看是否對自己有所啟發(fā),特別要注意聽自己預(yù)習(xí)未看懂的問題;
口到:主動與老師、同學(xué)們進行合作、探究,敢于提出問題,并發(fā)表自己的看法,不要人云亦云;
眼到:就是一看老師講課的表情,手勢所表達的意思,看老師的演示實驗、板書內(nèi)容,二看老師要求看的課本內(nèi)容,把書上知識與老師課堂講的知識聯(lián)系起來;
心到:就是課堂上要認真思考,注意理解課堂的新知識,課堂上的思考要主動積極.關(guān)鍵是理解并能融匯貫通,靈活使用.對于老師講的新概念,應(yīng)抓住關(guān)鍵字眼,變換角度去理解.
三、掌握練習(xí)方法,提高解答數(shù)學(xué)題的能力
數(shù)學(xué)的解答能力,主要通過實際的練習(xí)來提高.數(shù)學(xué)練習(xí)應(yīng)注意以下幾點:
1.端正態(tài)度,充分認識到數(shù)學(xué)練習(xí)的重要性.實際練習(xí)不僅可以提高解答速度,掌握解答技能技巧,而且,許多的新問題常在練習(xí)中出現(xiàn).
2.要有自信心與意志力.數(shù)學(xué)練習(xí)常有繁雜的計算,深奧的證明,自己應(yīng)有充足的信心,頑強的意志,耐心細致的習(xí)慣.
3.要養(yǎng)成先思考,后解答,再檢查的良好習(xí)慣,遇到一個題,不能盲目地進行練習(xí),無效計算,應(yīng)先深入領(lǐng)會題意,認真思考,抓住關(guān)鍵,再作解答.解答后,還應(yīng)進行檢查.
4.細觀察、活運用、尋規(guī)律、成技巧.
四、掌握復(fù)習(xí)方法,提高數(shù)學(xué)綜合能力.
復(fù)習(xí)是記憶之母,對所學(xué)的知識要不斷地復(fù)習(xí),復(fù)習(xí)鞏固應(yīng)注意掌握以下方法.
1.合理安排復(fù)習(xí)時間,“趁熱打鐵”,當(dāng)天學(xué)習(xí)的功課當(dāng)天必須復(fù)習(xí),無論當(dāng)天作業(yè)有多少,多難,都要鞏固復(fù)習(xí).
2.采用綜合復(fù)習(xí)方法,即通過找出知識的左右關(guān)系和縱橫之間的內(nèi)在聯(lián)系,從整體上提高,綜合復(fù)習(xí)具體可分“三步走”:首先是統(tǒng)觀全局,瀏覽全部內(nèi)容,通過喚起回憶,初步形成知識體系印象,其次是加深理解,對所學(xué)內(nèi)容進行綜合分析,最后是整理鞏固,形成完整的知識體系.
3.突破薄弱環(huán)節(jié)的復(fù)習(xí)方法.要多在薄弱環(huán)節(jié)上下功夫,加強鞏固好課本知識,只有突破薄弱環(huán)節(jié),才利于從整體上提高數(shù)學(xué)綜合能力.