不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>復(fù)習(xí)方法> 蘇教版八年級數(shù)學(xué)復(fù)習(xí)資料有哪些

蘇教版八年級數(shù)學(xué)復(fù)習(xí)資料有哪些

時間: 欣怡1112 分享

蘇教版八年級數(shù)學(xué)復(fù)習(xí)資料有哪些

  數(shù)學(xué)是很多初二同學(xué)的弱項,很多同學(xué)都不知道該如何復(fù)習(xí)數(shù)學(xué)。為此,以下是學(xué)習(xí)啦小編分享給大家的蘇教版八年級數(shù)學(xué)復(fù)習(xí)資料,希望可以幫到你!

  蘇教版八年級數(shù)學(xué)復(fù)習(xí)資料

  (一)運用公式法:

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

  (二)平方差公式

  1.平方差公式

  (1)式子: a2-b2=(a+b)(a-b)

  (2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。

  (三)因式分解

  1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

  2.因式分解,必須進(jìn)行到每一個多項式因式不能再分解為止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:

  a2+2ab+b2 =(a+b)2

  a2-2ab+b2 =(a-b)2

  這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。

  把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

  上面兩個公式叫完全平方公式。

  (2)完全平方式的形式和特點

 ?、夙棓?shù):三項

 ?、谟袃身検莾蓚€數(shù)的的平方和,這兩項的符號相同。

 ?、塾幸豁検沁@兩個數(shù)的積的兩倍。

  (3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

  (5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

  (五)分組分解法

  我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

  如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m +n)

  做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m+ n)

  =(m +n)??(a +b).

  這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.

  (六)提公因式法

  1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結(jié)構(gòu)特點,確定多項式的公因式.當(dāng)多項式各項的公因式是一個多項式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當(dāng)多項式各項的公因式是隱含的時候,要把多項式進(jìn)行適當(dāng)?shù)淖冃?,或改變符號,直到可確定多項式的公因式.

  2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

  1.必須先將常數(shù)項分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于

  項的系數(shù).

  2.將常數(shù)項分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:

 ?、?列出常數(shù)項分解成兩個因數(shù)的積各種可能情況;

 ?、趪L試其中的哪兩個因數(shù)的和恰好等于項系數(shù).

  3.將原多項式分解成(x+q)(x+p)的形式。

  (七)分式的乘除法

  1.把一個分式的分子與分母的公因式約去,叫做分式的約分。

  2.分式進(jìn)行約分的目的是要把這個分式化為最簡分式。

  3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分。

  4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

  5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡單的分式之分子分母可直接乘方。

  6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減。

  八年級數(shù)學(xué)期末考試復(fù)習(xí)指導(dǎo)

  一、克服心理疲勞

  第一,要有明確的學(xué)習(xí)目的。學(xué)習(xí)就像從河里抽水,動力越足,水流量越大。動力來源于目的,只有樹立正確的學(xué)習(xí)目的,才會產(chǎn)生強(qiáng)大的學(xué)習(xí)動力;第二,要培養(yǎng)濃厚的學(xué)習(xí)興趣。興趣的形成與大腦皮層的興奮中心相聯(lián)系,并伴有愉快、喜悅、積極的情緒體驗。而心理疲勞的產(chǎn)生正是大腦皮層抵制的消極情緒引起的。因此,培養(yǎng)自己的學(xué)習(xí)興趣,是克服心理疲勞的關(guān)鍵所在。有了興趣,學(xué)習(xí)才會有積極性、自覺性、主動性,才能使心理處于一種良好的競技狀態(tài);第三,要注意學(xué)習(xí)的多樣化,書本學(xué)習(xí)本身就是枯燥單調(diào)的,如果多次重復(fù)學(xué)習(xí)某門課程或章節(jié)內(nèi)容,易使大腦皮層產(chǎn)生抑制,出現(xiàn)心理飽和,產(chǎn)生厭倦情緒。所以考生不妨將各門課程交替起來進(jìn)行復(fù)習(xí)。

  二、戰(zhàn)勝高原現(xiàn)象

  復(fù)習(xí)中的高原現(xiàn)象,是指在復(fù)習(xí)到一定時期時,往往停滯不前,不僅復(fù)習(xí)不見進(jìn)步,反而有退步的現(xiàn)象。在高原期內(nèi),并非學(xué)習(xí)毫無進(jìn)步,而是某部分進(jìn)步,另外一些部分則退步,兩者相抵,致使復(fù)習(xí)成效未從根本上發(fā)生變化,因而使人灰心失望。當(dāng)考生在復(fù)習(xí)迎考過程中遭遇高原期時,切忌急躁或喪失信心,應(yīng)找出學(xué)習(xí)方法、學(xué)習(xí)積極性等方面的原因。及時調(diào)整復(fù)習(xí)進(jìn)度,在科學(xué)用腦、提高復(fù)習(xí)效率上多下功夫。

  三、重視復(fù)習(xí)“錯誤”

  如果在復(fù)習(xí)中不善于從錯誤中走出來,缺陷和漏洞就會越來越多,任其下去,最終就會蟻穴潰堤。在備考期間,要想降低錯誤率,除了及時訂正、全面扎實復(fù)習(xí)之外,非常關(guān)鍵的問題就是找出原因,不斷復(fù)習(xí)錯誤。即定期翻閱錯題,回想錯誤的原因,并對各種錯題及錯誤原因進(jìn)行分類整理。對其中那些反復(fù)錯誤的問題還可考慮再做一遍,以絕“后患”。錯誤原因大致有:概念理解上的問題、粗心大意帶來的問題以及書寫潦草凌亂給自己帶來的錯覺問題等,從而有效地避免在考試時再犯同一類型的錯誤。

  四、把握心理特點搞好考前復(fù)習(xí)

  實踐證明,一個人在氣質(zhì)、性格、心理穩(wěn)定程度等因素也會影響考前復(fù)習(xí)??忌趶?fù)習(xí)迎考過程中,應(yīng)根據(jù)自己的心理特點來制訂復(fù)習(xí)迎考計劃,根據(jù)自己的心態(tài)來調(diào)整復(fù)習(xí)的進(jìn)度,選擇與運用最好的復(fù)習(xí)方式方法,使自己的考前復(fù)習(xí)達(dá)到預(yù)期的最佳效果。

  1.課本不容忽視

  對于初二的學(xué)生來說,都在學(xué)習(xí)新課,課本是大家都容易忽視的一個重要的復(fù)習(xí)資料。平時在學(xué)校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學(xué)們在翻看筆記的同時,對照課本,把學(xué)過的知識點反復(fù)閱讀、理解,并對照課后練習(xí)里的習(xí)題進(jìn)行反復(fù)思考、琢磨、融會貫通,加深對知識點的理解。對于課本上的重點內(nèi)容、重點例題也要著重記憶。

  2.錯題本

  相信學(xué)習(xí)習(xí)慣好的學(xué)生都應(yīng)該有一本錯題本,把每次習(xí)題、作業(yè)、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發(fā)現(xiàn)自己知識和能力上的薄弱點,經(jīng)常拿出來翻看,遇到反復(fù)做錯的題目,要主動和同學(xué)商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。

  3.歷屆真題

  資源可以的話,找?guī)滋淄鶎玫钠谀┛荚囶},最好是自己縣區(qū)的,其他縣區(qū)也可以(考點差不多一樣的),在規(guī)定時間內(nèi),摸摸底,熟悉每個章節(jié)考的的題型,練練自己的做題效率。

  八年級數(shù)學(xué)期末考試復(fù)習(xí)技巧

  一、不要怕數(shù)學(xué)。在我們的生活中,數(shù)學(xué)是無處不在的:我們買東西,付錢要用數(shù)學(xué);看球賽,比分也是數(shù)學(xué);勾股定理、黃金分割與優(yōu)選法在我們生活中的應(yīng)用更是比比皆是。其實,現(xiàn)代數(shù)學(xué)的范圍已大大擴(kuò)大了,包括數(shù)論、圖論、概率、悖論等多方面的內(nèi)容,而圖論、遞推關(guān)系在計算機(jī)中的應(yīng)用也是非常廣泛的。所以,數(shù)學(xué)與我們的生活有著緊密的聯(lián)系,可以說:數(shù)學(xué)是無處不在的。

  二、學(xué)數(shù)學(xué)要學(xué)習(xí)什么。一句話,就是學(xué)習(xí)它的思維方法。在我們的現(xiàn)階段,以及我們工作以后,很少能用到具體的數(shù)學(xué)題,但是,數(shù)學(xué)的思維方法是指導(dǎo)我們學(xué)習(xí)、工作的思想,所以,數(shù)學(xué)的思維方法是非常重要的。舉個例子:數(shù)論中有一個著名的問題,就是歌德巴赫猜想。許多科學(xué)家都表示,用現(xiàn)有的數(shù)學(xué)方法無法解決這個問題。這樣,要想解決歌德巴赫猜想必須用一種新的方法,而這種方法就是我們需要的。這也就是數(shù)學(xué)的精髓所在。

  三、打好基礎(chǔ),吃透課本。課本的題目是比較簡單、比較基礎(chǔ)的,卻也不能忽視,這是因為課本的題目為我們提供了一種簡捷的思維方式和比較嚴(yán)密的解題步驟。數(shù)學(xué)是一門要求嚴(yán)密的科學(xué),需要思維的嚴(yán)謹(jǐn)性,課本就為我們提供了一個范例。這是一個平行四邊形,求證它的對邊相等。我們想容易想到,連接對角線,用兩個三角形全等來證明。這就提供了一個思路:遇到平行線,可以做截這兩條平行線的直線,把平行關(guān)系轉(zhuǎn)化為角相等的關(guān)系。這也用到了一種轉(zhuǎn)化思想。掌握簡單題的思路,難題也就能變得簡單了。

  四、拓展知識,提高能力。現(xiàn)在,計算機(jī)非常熱門,而計算機(jī)編程就能用到圖論、遞推關(guān)系等數(shù)學(xué)知識,提前了解一下是很有幫助的。我們是21世紀(jì)的學(xué)生,應(yīng)當(dāng)具有寬廣的知識面和較強(qiáng)的綜合能力。 學(xué)習(xí)上在課前必須預(yù)習(xí)老師所要講解的內(nèi)容,對于簡單的要自己理解掌握,公理、公式和推論要有意識的去記憶,并劃出自己不懂得地方; (2)客商要認(rèn)真聽講,絕對不能開小差,更要著重聽你在預(yù)習(xí)時感到困惑的地方,并記下經(jīng)典例題; (3)課后認(rèn)真做練習(xí)。對自己把握得不好的地方要加大訓(xùn)練,記熟公式。 學(xué)習(xí)數(shù)學(xué)的主要方法就是加深理解,在理解之上記憶。 總之,數(shù)學(xué)是一門基礎(chǔ)學(xué)科,它的應(yīng)用是非常廣泛的。我一定會用心去學(xué)好。

猜你喜歡:

1.初二數(shù)學(xué)上學(xué)期復(fù)習(xí)計劃有哪些

2.一至六年級數(shù)學(xué)知識點復(fù)習(xí)資料整合

3.八年級數(shù)學(xué)上冊知識樹

4.新人教版八年級數(shù)學(xué)上冊知識點歸納

5.蘇教版八年級數(shù)學(xué)上冊知識點

3752783