如何在教學(xué)中啟發(fā)孩子數(shù)學(xué)
學(xué)習(xí)興趣是學(xué)生學(xué)習(xí)主動(dòng)性的體現(xiàn),也是學(xué)生學(xué)習(xí)活動(dòng)的動(dòng)力源泉。下面是小編為大家整理的關(guān)于如何在教學(xué)中啟發(fā)孩子數(shù)學(xué),希望對(duì)您有所幫助。歡迎大家閱讀參考學(xué)習(xí)!
1如何在教學(xué)中啟發(fā)孩子數(shù)學(xué)
一、激發(fā)學(xué)生思維具有創(chuàng)造性
直覺思維往往透過紛繁的現(xiàn)象,直接涉入事物的核心,出乎意料地創(chuàng)造出神奇結(jié)果。如,在重新安排已有的知識(shí),提供新的經(jīng)驗(yàn),或者對(duì)問題提出新的設(shè)想,新穎的見解,不同凡響的思路,啟發(fā)就顯示出直覺思維的創(chuàng)造性。
二、激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,是強(qiáng)烈的求知欲和創(chuàng)新愿望的重要前提
如,在整除概念的教學(xué)中,學(xué)生掌握了能被2、3、5整除的特征后,再提問,被2、3整除的數(shù)一定能被幾整除?學(xué)生做出判斷能被2、3整除的數(shù)一定能被6整除,能被3和5整除的數(shù)一定能被15整除。講解互質(zhì)概念后,再對(duì)上面問題歸納:能被a與b整除的數(shù)一定能被ab整除。因此,為使學(xué)生樂學(xué),啟發(fā)點(diǎn)要激勵(lì)學(xué)生思維,具有趣味性,使學(xué)生形成積極思維、勇于探索、主動(dòng)獲取知識(shí)的能力,為培養(yǎng)學(xué)生的創(chuàng)新意識(shí)起到積極的推動(dòng)作用。
三、要循序漸進(jìn)具有邏輯性
掌握科學(xué)的真理,思維必須要遵守一定的邏輯規(guī)律。如,概念是在感覺、知覺和表象的基礎(chǔ)上運(yùn)用比較、分析、綜合、概括等線索,認(rèn)識(shí)獲取知識(shí),這就要求啟發(fā)點(diǎn)循序漸進(jìn),具有邏輯性。
四、要富于變化,具有靈活性
在引導(dǎo)學(xué)生形成概念的教學(xué)中,有時(shí)采用“直接揭露概念的本質(zhì)”與“變式圖形”相結(jié)合或交替使用,就能減少各自的消極作用,發(fā)揮兩者特有的積極作用,這就要求啟發(fā)點(diǎn)要富于變化,具有靈活性,感受到學(xué)習(xí)樂趣的創(chuàng)新。
2培養(yǎng)學(xué)生數(shù)學(xué)學(xué)習(xí)興趣
不斷改革教學(xué)模式,培養(yǎng)學(xué)生數(shù)學(xué)能力
長(zhǎng)期以來,許多學(xué)校的課堂教學(xué)存在一個(gè)嚴(yán)重問題,即只注重教師與學(xué)生之間的“教”與“學(xué)”,而忽視了學(xué)生與學(xué)生之間的交流和學(xué)習(xí),從而導(dǎo)致學(xué)生自主學(xué)習(xí)空間萎縮。長(zhǎng)此以往,學(xué)生在學(xué)習(xí)上依賴性增強(qiáng),缺乏獨(dú)立思考問題和解決問題的能力,最終導(dǎo)致厭學(xué)情緒,致使學(xué)習(xí)效率普遍降低。教學(xué)中,在教師的主導(dǎo)下,堅(jiān)持學(xué)生是探究的主體,引導(dǎo)學(xué)生對(duì)知識(shí)的發(fā)生、形成、發(fā)展全過程進(jìn)行探究活動(dòng)。讓學(xué)生學(xué)會(huì)發(fā)現(xiàn)問題、提出問題,并逐步培養(yǎng)他們分析問題、解決問題的能力。從而激起他們強(qiáng)烈的求知欲和創(chuàng)造欲。讓學(xué)生從思想上產(chǎn)生由“要我學(xué)”到“我要學(xué)”的轉(zhuǎn)變,真正實(shí)現(xiàn)主動(dòng)參與,不斷培養(yǎng)學(xué)生“聽、說、讀、寫、想”的數(shù)學(xué)能力。
在數(shù)學(xué)教學(xué)活動(dòng)中,“聽”就是學(xué)生首先要聽課,教師可以向?qū)W生傳授一些聽課技能。例如:在聽課過程中怎樣保持注意力高度集中,思路與教師同步;怎樣才能更好地領(lǐng)會(huì)教師的講解;怎樣學(xué)會(huì)歸納要點(diǎn)、重點(diǎn);遇到不懂的地方怎么辦等?!罢f”就是學(xué)生對(duì)所學(xué)的數(shù)學(xué)知識(shí)能夠用自己的語言進(jìn)行描述,對(duì)數(shù)學(xué)中的概念能夠做出解釋,與同學(xué)之間進(jìn)行討論,向老師提出問題,使得自己的見解和提出的問題易于被別人理解?!白x”就是學(xué)生的閱讀能力,從某種層面上講,也是為今后“說”的技能打基礎(chǔ)。學(xué)生通過閱讀課本和課外資料,既豐富了知識(shí)面,又養(yǎng)成了自學(xué)的習(xí)慣,從而增強(qiáng)了學(xué)生學(xué)習(xí)過程中的獨(dú)立性?!皩憽本褪菍W(xué)生將學(xué)到的知識(shí)具體運(yùn)用到學(xué)習(xí)活動(dòng)中去。 “寫”能力的高低,直接影響他們對(duì)數(shù)學(xué)思想、數(shù)學(xué)方法和數(shù)學(xué)知識(shí)的理解和掌握,并決定著他們數(shù)學(xué)思維能力的發(fā)展。“想”就是要發(fā)揮學(xué)生思維的“自由想象”。讓學(xué)生充分發(fā)揮自由想象,在想象中去感受、體驗(yàn),這樣既活躍了課堂氣氛,又讓學(xué)生在想象中對(duì)所學(xué)知識(shí)得到了進(jìn)一步的鞏固。
注重創(chuàng)設(shè)數(shù)學(xué)情境,激發(fā)學(xué)生學(xué)習(xí)興趣
學(xué)習(xí)興趣是學(xué)生學(xué)習(xí)主動(dòng)性的體現(xiàn),也是學(xué)生學(xué)習(xí)活動(dòng)的動(dòng)力源泉。古往今來,很多教育家都非常重視對(duì)學(xué)生學(xué)習(xí)興趣的培養(yǎng)、引導(dǎo)和利用??鬃釉唬骸爸撸蝗绾弥摺?,說明“好學(xué)”對(duì)教育的重要性。作為教師要做到以“趣”引路,以“情”導(dǎo)航。所以在教新知識(shí)的之前,創(chuàng)設(shè)情境,能有效地激起學(xué)生的學(xué)習(xí)興趣,提高學(xué)習(xí)效率。在數(shù)學(xué)教學(xué)中,不能照本宣科,對(duì)學(xué)生灌輸數(shù)學(xué)知識(shí),而應(yīng)積極創(chuàng)設(shè)教學(xué)情境,啟發(fā)學(xué)生的思維。如學(xué)生都喜歡聽故事,猜謎語,作遐想。教師應(yīng)當(dāng)適時(shí)創(chuàng)設(shè)一定的教學(xué)情境,引起學(xué)生的好奇心,激發(fā)起他們學(xué)習(xí)的動(dòng)機(jī),使他們興趣盎然地投入學(xué)習(xí)中,變“要我學(xué)”為“ 我要學(xué)” 。
在平時(shí)的教學(xué)中,努力挖掘教材,恰當(dāng)穿插有關(guān)的數(shù)學(xué)趣題、典故以及數(shù)學(xué)謎語,巧設(shè)懸念。如講 “填幻方”,以及希臘數(shù)學(xué)家丟番圖的“墓志銘”代數(shù)的故事,黃金分割,高斯的故事等等。如在講授相似三角形應(yīng)用時(shí),一開始就應(yīng)設(shè)下懸念(你能否不過河測(cè)出河寬?不上樹測(cè)出樹高?)。這種懸念促使學(xué)生對(duì)所學(xué)的知識(shí)比較感興趣,學(xué)生通過這種方式學(xué)會(huì)了運(yùn)用知識(shí)解決問題,并從中體驗(yàn)到成功的樂趣,從而產(chǎn)生了進(jìn)一步學(xué)習(xí)的愿望。作為教師就應(yīng)該認(rèn)真研究學(xué)生的這種心理傾向,并通過這種途徑培養(yǎng)學(xué)生的求知欲望,引導(dǎo)學(xué)生形成良好的意識(shí)傾向,要充分相信每一位學(xué)生的潛能,鼓舞每一位學(xué)生主動(dòng)參與學(xué)習(xí)。
3數(shù)學(xué)課堂教學(xué)
營(yíng)造民主、和諧的課堂氛圍,為創(chuàng)新提供優(yōu)良土壤。
在實(shí)施創(chuàng)造性教學(xué)的過程中,必須建立民主平等的新型師生關(guān)系,增強(qiáng)師生相互尊重、理解、支持的課堂教學(xué)合作意識(shí),做到教學(xué)相長(zhǎng)。在創(chuàng)造教學(xué)的課堂合作中,師生角色應(yīng)當(dāng)是動(dòng)態(tài)的,應(yīng)根據(jù)教學(xué)環(huán)境的變化而變化。但無論在哪種形式的合作中,教師都應(yīng)當(dāng)好導(dǎo)演,讓學(xué)生當(dāng)好演員,要把大量的課堂時(shí)間留給學(xué)生,使他們有機(jī)會(huì)進(jìn)行相互切磋,共同提高。在實(shí)施創(chuàng)造性教學(xué)中,強(qiáng)化課堂合作的一切活動(dòng)都是在一種合作的氛圍中展開的,這種氛圍的優(yōu)劣取決于教師和學(xué)生的教與學(xué)的態(tài)度和熱情。因此,教師要努力創(chuàng)設(shè)和諧、民主、平等的教學(xué)合作氛圍,使學(xué)生和教師在課堂上都能夠“自由地發(fā)揮”。
這就要求我們?yōu)橥诰驅(qū)W生潛在的智慧而創(chuàng)設(shè)一個(gè)課堂合作場(chǎng)所,這個(gè)場(chǎng)所以“情”和“境”為依托,以促進(jìn)課堂教學(xué)合作和學(xué)生發(fā)展為前提,以培養(yǎng)學(xué)生創(chuàng)造力為關(guān)鍵,來達(dá)到提高學(xué)生整體素質(zhì)的目的。在實(shí)際教學(xué)中,要用鼓勵(lì)的語言、專注的行為不斷去激發(fā)學(xué)生發(fā)表自己的見解,使學(xué)生的思維越活越好,思路越寬越好,質(zhì)疑越多越好,方法越奇越好,速度越快越好,爭(zhēng)論越激烈越好,觀察越細(xì)越好,從而使學(xué)生的學(xué)習(xí)熱情有效地得到保持,大膽地展示自己的想法,激發(fā)創(chuàng)新意識(shí)。
激發(fā)學(xué)習(xí)動(dòng)機(jī),培養(yǎng)學(xué)習(xí)興趣,為創(chuàng)新提供內(nèi)驅(qū)力。
“數(shù)學(xué)學(xué)習(xí)與學(xué)生的身心發(fā)展”研究表明,每個(gè)學(xué)生都有分析問題、解決問題和創(chuàng)造的潛能,都有一種與生俱來的把自己當(dāng)成探索者、研究者、發(fā)現(xiàn)者的本能,他們有要證實(shí)自己思想的欲望。因此,老師始終要把學(xué)生當(dāng)成學(xué)習(xí)的主人,充分發(fā)揮他們的主體作用,倡導(dǎo)學(xué)生主動(dòng)參與、樂于探究、勤于動(dòng)手、關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗(yàn),珍視每個(gè)學(xué)生的獨(dú)特性,激發(fā)每個(gè)學(xué)生的學(xué)習(xí)動(dòng)機(jī),使創(chuàng)新、創(chuàng)造成為每個(gè)學(xué)生內(nèi)在要求和強(qiáng)烈愿望。
培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,首先要使其認(rèn)識(shí)學(xué)習(xí)數(shù)學(xué)的重要性?!皵?shù)學(xué)與人類文明同樣古老”,我們?cè)诮虒W(xué)中,應(yīng)注意結(jié)合所學(xué)內(nèi)容有意識(shí)滲透數(shù)學(xué)史教育,引導(dǎo)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和動(dòng)力。例如講到“歐拉定理”時(shí),介紹數(shù)學(xué)大師歐拉非凡的數(shù)學(xué)創(chuàng)造能力和頑強(qiáng)的毅力,其他數(shù)學(xué)家計(jì)算彗星軌道需要幾個(gè)月,他只需三天;過度的工作使得歐拉雙目失明,在失明后的十七年里,他憑借驚人的記憶力和罕見的心算能力,口述近四百篇論文和多本專著。祖沖之運(yùn)用劉徽的“割圓術(shù)”,把圓周率精確到小數(shù)點(diǎn)后七位,領(lǐng)先歐洲一千多年。介紹這些事例,能讓學(xué)生潛移默化地領(lǐng)悟到數(shù)學(xué)思想方法的產(chǎn)生和發(fā)展過程;學(xué)習(xí)數(shù)學(xué)家的堅(jiān)毅品質(zhì),以及為數(shù)學(xué)和科學(xué)的獻(xiàn)身精神,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和興趣。
4數(shù)學(xué)學(xué)生獨(dú)立思考能力的培養(yǎng)
充分利用數(shù)學(xué)探究
在小學(xué)數(shù)學(xué)教學(xué)中,利用數(shù)學(xué)探究的方法,可以培養(yǎng)學(xué)生的問題意識(shí)。首先,小學(xué)數(shù)學(xué)教師要在數(shù)學(xué)教學(xué)中不斷地灌輸探究性學(xué)習(xí)的教學(xué)思想,教師要想辦法抓住學(xué)生的求知欲望,學(xué)生的學(xué)習(xí)動(dòng)力與他們的求知欲是成正比的,只有動(dòng)力足了,學(xué)生才可能主動(dòng)地進(jìn)行數(shù)學(xué)知識(shí)的探索。同時(shí),為了提高學(xué)生的運(yùn)算能力和運(yùn)算速度,掌握運(yùn)算的技巧和順序,小學(xué)數(shù)學(xué)教師可以設(shè)計(jì)“5分鐘四則運(yùn)算比賽”環(huán)節(jié),用“接力棒”的形式,讓每個(gè)學(xué)生都有機(jī)會(huì)回答,使每個(gè)學(xué)生都不敢在數(shù)學(xué)課堂上出現(xiàn)懈怠的狀況。設(shè)計(jì)的數(shù)字不要太大,重點(diǎn)使學(xué)生掌握方法,同時(shí)還可設(shè)置搶答比賽。這樣的教學(xué)形式既有一定的趣味性,又可以培養(yǎng)學(xué)生的競(jìng)爭(zhēng)意識(shí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,發(fā)掘?qū)W生潛在的問題意識(shí),這對(duì)于學(xué)生以后的成長(zhǎng)也是具有重要作用的。
植入先進(jìn)的數(shù)學(xué)思想
小學(xué)數(shù)學(xué)教師應(yīng)該引導(dǎo)學(xué)生學(xué)習(xí)數(shù)學(xué)的基本理論及其數(shù)學(xué)知識(shí)的概念,并且在小學(xué)數(shù)學(xué)教學(xué)的過程中,教師應(yīng)該著重培養(yǎng)學(xué)生數(shù)量與形體、形狀互相結(jié)合的思想,從而開拓?cái)?shù)形結(jié)合的創(chuàng)造性思維。遇到難題可以利用數(shù)形結(jié)合的思想解決,而數(shù)形結(jié)合思想中的創(chuàng)造性思維更是重中之重,只有不斷培養(yǎng)學(xué)生數(shù)形結(jié)合的創(chuàng)造性思維,他們的獨(dú)立思考能力才會(huì)提高,才能達(dá)到新課標(biāo)的要求。比如在講三角形的時(shí)候,可以聯(lián)系生活中的自行車架說明三角形具有穩(wěn)定性,還要讓學(xué)生清楚地知道勾股定理中數(shù)與形的聯(lián)系,這明顯會(huì)讓學(xué)生理解數(shù)學(xué)題的意義。在幫助學(xué)生構(gòu)建數(shù)學(xué)思想之后,要不斷地進(jìn)行思想鞏固,經(jīng)過學(xué)生個(gè)人獨(dú)立的思考以及小學(xué)數(shù)學(xué)教師的反復(fù)引導(dǎo)和幫助,才有利于學(xué)生積累數(shù)學(xué)經(jīng)驗(yàn),幫助學(xué)生學(xué)習(xí)新的數(shù)學(xué)知識(shí),找出新的解題思路,從根本上提高學(xué)生學(xué)習(xí)數(shù)學(xué)的能力。
培養(yǎng)學(xué)生的鉆研能力
小學(xué)數(shù)學(xué)教師要重視培養(yǎng)學(xué)生的鉆研能力,學(xué)生在鉆研數(shù)學(xué)問題的過程中,能夠充分發(fā)散他們的思維。例如,在學(xué)習(xí)長(zhǎng)度的數(shù)學(xué)概念時(shí),會(huì)涉及“厘米、分米和米”的教學(xué),為了貫徹直觀性教學(xué),教師可以提前準(zhǔn)備好長(zhǎng)度分別為1米、1分米和1厘米的小木棒分發(fā)給學(xué)生,讓他們直觀感受這些長(zhǎng)度究竟為多少,學(xué)生可以通過實(shí)際的觸摸來理解厘米、分米和米的差距,對(duì)長(zhǎng)度建立起一個(gè)大致的理解,然后,教師可以讓學(xué)生用一分米的小木棒去與一米的木棒進(jìn)行比較,看一米能夠包含幾個(gè)分米。小學(xué)數(shù)學(xué)教師在教學(xué)過程中,應(yīng)該加強(qiáng)學(xué)生的獨(dú)立思考能力,應(yīng)該多讓學(xué)生進(jìn)行獨(dú)立思考從而得出問題的答案,通過實(shí)際操作鉆研所學(xué)習(xí)的知識(shí),從而提高學(xué)生的學(xué)習(xí)水平。
如何在教學(xué)中啟發(fā)孩子數(shù)學(xué)相關(guān)文章:
★ 如何訓(xùn)練孩子的數(shù)學(xué)思維能力
★ 如何有效的進(jìn)行數(shù)學(xué)教學(xué)
★ 如何在課堂教學(xué)中培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)習(xí)慣
★ 如何從小培養(yǎng)孩子的數(shù)學(xué)思維
★ 如何開發(fā)培養(yǎng)孩子的數(shù)學(xué)思維能力