七年級數(shù)學(xué)下冊教學(xué)設(shè)計
教學(xué)設(shè)計代表著七年級數(shù)學(xué)教師對課堂的假設(shè)與預(yù)想,以下是學(xué)習(xí)啦小編為大家整理的七年級數(shù)學(xué)下冊教學(xué)設(shè)計,希望你們喜歡。
七年級數(shù)學(xué)下教學(xué)設(shè)計
5.1相交線
[教學(xué)目標(biāo)]
1. 通過動手、操作、推斷、交流等活動,進(jìn)一步發(fā)展空間觀念,培養(yǎng)識圖能力,推理能力和有條理表達(dá)能力
2. 在具體情境中了解鄰補(bǔ)角、對頂角,能找出圖形中的一個角的鄰補(bǔ)角和對頂角,理解對頂角相等,并能運(yùn)用它解決一些簡單問題
[教學(xué)重點(diǎn)與難點(diǎn)]
重點(diǎn):鄰補(bǔ)角與對頂角的概念.對頂角性質(zhì)與應(yīng)用
難點(diǎn):理解對頂角相等的性質(zhì)的探索
[教學(xué)設(shè)計]
一.創(chuàng)設(shè)情境 激發(fā)好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊(yùn)涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學(xué)生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發(fā)生了什么變化?剪刀張開的口又怎么變化?
教師點(diǎn)評:如果把剪刀的構(gòu)造看作是兩條相交的直線,以上就關(guān)系到兩條直線相交所成的角的問題,
二.認(rèn)識鄰補(bǔ)角和對頂角,探索對頂角性質(zhì)
1.學(xué)生畫直線AB、CD相交于點(diǎn)O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據(jù)不同的位置怎么將它們分類?
學(xué)生思考并在小組內(nèi)交流,全班交流。
當(dāng)學(xué)生直觀地感知角有“相鄰”、“對頂”關(guān)系時,教師引導(dǎo)學(xué)生用
幾何語言準(zhǔn)確表達(dá)
;
有公共的頂點(diǎn)O,而且 的兩邊分別是 兩邊的反向延長線
2.學(xué)生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類角的度數(shù)有什么關(guān)系?
(學(xué)生得出結(jié)論:相鄰關(guān)系的兩個角互補(bǔ),對頂?shù)膬蓚€角相等)
3學(xué)生根據(jù)觀察和度量完成下表:
兩條直線相交 所形成的角 分類 位置關(guān)系 數(shù)量關(guān)系
教師提問:如果改變 的大小,會改變它與其它角的位置關(guān)系和數(shù)量關(guān)系嗎?
4.概括形成鄰補(bǔ)角、對頂角概念和對頂角的性質(zhì)
三.初步應(yīng)用
練習(xí):
下列說法對不對
(1) 鄰補(bǔ)角可以看成是平角被過它頂點(diǎn)的一條射線分成的兩個角
(2) 鄰補(bǔ)角是互補(bǔ)的兩個角,互補(bǔ)的兩個角是鄰補(bǔ)角
(3) 對頂角相等,相等的兩個角是對頂角
學(xué)生利用對頂角相等的性質(zhì)解釋剪刀剪布過程中所看到的現(xiàn)象
四.鞏固運(yùn)用例題:如圖,直線a,b相交, ,求 的度數(shù)。
[鞏固練習(xí)](教科書5頁練習(xí))已知,如圖, ,求: 的度數(shù)
[小結(jié)]
鄰補(bǔ)角、對頂角.
[作業(yè)]課本P9-1,2P10-7,8
[備選題]
一判斷題:
如果兩個角有公共頂點(diǎn)和一條公共過,而且這兩個角互為補(bǔ)角,那么它們互為鄰補(bǔ)角( )
兩條直線相交,如果它們所成的鄰補(bǔ)角相等,那么一對對頂角就互補(bǔ)( )
二填空題
1如圖,直線AB、CD、EF相交于點(diǎn)O, 的對頂角是 , 的鄰補(bǔ)角是
若 : =2:3, ,則 =
2如圖,直線AB、CD相交于點(diǎn)O
則
5.1.2 垂線
[教學(xué)目標(biāo)]
1. 理解垂線、垂線段的概念,會用三角尺或量角器過一點(diǎn)畫已知直線的垂線。
2. 掌握點(diǎn)到直線的距離的概念,并會度量點(diǎn)到直線的距離。
3. 掌握垂線的性質(zhì),并會利用所學(xué)知識進(jìn)行簡單的推理。
[教學(xué)重點(diǎn)與難點(diǎn)]
1.教學(xué)重點(diǎn):垂線的定義及性質(zhì)。
2.教學(xué)難點(diǎn):垂線的畫法。
[教學(xué)過程設(shè)計]
一. 復(fù)習(xí)提問:
1、 敘述鄰補(bǔ)角及對頂角的定義。
2、 對頂角有怎樣的性質(zhì)。
二.新課:
引言:
前面我們復(fù)習(xí)了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關(guān)系呢?日常生活中有沒有這方面的實(shí)例呢?下面我們就來研究這個問題。
(一)垂線的定義
當(dāng)兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。
如圖,直線AB、CD互相垂直,記作 ,垂足為O。
請同學(xué)舉出日常生活中,兩條直線互相垂直的實(shí)例。
注意:
1、 如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經(jīng)過直線l上一點(diǎn)A畫l的垂線,這樣的垂線能畫出幾條?
3、經(jīng)過直線l外一點(diǎn)B畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經(jīng)過已知點(diǎn),沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點(diǎn)畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質(zhì)
經(jīng)過一點(diǎn)(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質(zhì)1 過一點(diǎn)有且只有一條直線與已知直線垂直。
練習(xí):教材第7頁
探究:
如圖,連接直線l外一點(diǎn)P與直線l上各點(diǎn)O,
A,B,C,……,其中 (我們稱PO為點(diǎn)P到直線
l的垂線段)。比較線段PO、PA、PB、PC……的長短,這些線段中,哪一條最短?
性質(zhì)2 連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
簡單說成: 垂線段最短。
(四)點(diǎn)到直線的距離
直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離。
如上圖,PO的長度叫做點(diǎn) P到直線l的距離。
例1
(1)AB與AC互相垂直;
(2)AD與AC互相垂直;
(3)點(diǎn)C到AB的垂線段是線段AB;
(4)點(diǎn)A到BC的距離是線段AD;
(5)線段AB的長度是點(diǎn)B到AC的距離;
(6)線段AB是點(diǎn)B到AC的距離。
其中正確的有( )
A. 1個 B. 2個
C. 3個 D. 4個
解:A
例2 如圖,直線AB,CD相交于點(diǎn)O,
解:略
例3 如圖,一輛汽車在直線形公路AB上由A
向B行駛,M,N分別是位于公路兩側(cè)的村莊,
設(shè)汽車行駛到點(diǎn)P位置時,距離村莊M最近,
行駛到點(diǎn)Q位置時,距離村莊N最近,請在圖中公路AB上分別畫出P,Q兩點(diǎn)位置。
練習(xí):
1.
2.教材第9頁3、4
教材第10頁9、10、11、12
小結(jié):
1. 要掌握好垂線、垂線段、點(diǎn)到直線的距離這幾個概念;
2. 要清楚垂線是相交線的特殊情況,與上節(jié)知識聯(lián)系好,并能正確利用工具畫出標(biāo)準(zhǔn)圖形;
3. 垂線的性質(zhì)為今后知識的學(xué)習(xí)奠定了基礎(chǔ),應(yīng)該熟練掌握。
作業(yè):教材第9頁5、6.
5.2.1 平行線
[教學(xué)目標(biāo)]
1.理解平行線的意義,了解同一平面內(nèi)兩條直線的位置關(guān)系;
2.理解并掌握平行公理及其推論的內(nèi)容;
3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;
4.了解“三線八角”并能在具體圖形中找出同位角、內(nèi)錯角與同旁內(nèi)角;
4.了解平行線在實(shí)際生活中的應(yīng)用,能舉例加以說明.
[教學(xué)重點(diǎn)與難點(diǎn)]
1.教學(xué)重點(diǎn):平行線的概念與平行公理;
2.教學(xué)難點(diǎn):對平行公理的理解.
[教學(xué)過程]
一、復(fù)習(xí)提問
相交線是如何定義的?
二、新課引入
平面內(nèi)兩條直線的位置關(guān)系除平行外,還有哪些呢?
制作教具,通過演示,得出平面內(nèi)兩條直線的位置關(guān)系及平行線的概念.
三、同一平面內(nèi)兩條直線的位置關(guān)系
1.平行線概念:在同一平面內(nèi),不相交的兩條直線叫做平行線.直線a與b平行,記作a∥b.
(畫出圖形)
2.同一平面內(nèi)兩條直線的位置關(guān)系有兩種:(1)相交;(2)平行.
3.對平行線概念的理解:
兩個關(guān)鍵:一是“在同一個平面內(nèi)”(舉例說明);二是“不相交”.
一個前提:對兩條直線而言.
4.平行線的畫法
平行線的畫法是幾何畫圖的基本技能之一,在以后的學(xué)習(xí)中,會經(jīng)常遇到畫平行線的問題.方法為:一“落”(三角板的一邊落在已知直線上),二“靠”(用直尺緊靠三角板的另一邊),三“移”(沿直尺移動三角板,直至落在已知直線上的三角板的一邊經(jīng)過已知點(diǎn)),四“畫”(沿三角板過已知點(diǎn)的邊畫直線).
四、平行公理
1.利用前面的教具,說明“過直線外一點(diǎn)有且只有一條直線與已知直線平行”.
2.平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行.
提問垂線的性質(zhì),并進(jìn)行比較.
3.平行公理推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.即:如果b∥a,c∥a,那么b∥c.
五、三線八角
由前面的教具演示引出.
如圖,直線a,b被直線c所截,形成的8個角中,其中同位角有4對,內(nèi)錯角有2對,同旁內(nèi)角有2對.
六、課堂練習(xí)
1.在同一平面內(nèi),兩條直線可能的位置關(guān)系是 .
2.在同一平面內(nèi),三條直線的交點(diǎn)個數(shù)可能是 .
3.下列說法正確的是( )
A.經(jīng)過一點(diǎn)有且只有一條直線與已知直線平行
B.經(jīng)過一點(diǎn)有無數(shù)條直線與已知直線平行
C.經(jīng)過一點(diǎn)有一條直線與已知直線平行
D.經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行
4.若∠ 與∠ 是同旁內(nèi)角,且∠ =50°,則∠ 的度數(shù)是( )
A.50° B.130° C.50°或130° D.不能確定
5.下列命題:(1)長方形的對邊所在的直線平行;(2)經(jīng)過一點(diǎn)可作一條直線與已知直線平行;(3)在同一平面內(nèi),如果兩條直線不平行,那么這兩條直線相交;(4)經(jīng)過一點(diǎn)可作一條直線與已知直線垂直.其中正確的個數(shù)是( )
A.1 B.2 C.3 D.4
6.如圖,直線AB,CD被DE所截,則∠1和 是同位角,∠1和 是內(nèi)錯角,∠1和 是同旁內(nèi)角.如果∠5=∠1,那么∠1 ∠3.
七、小結(jié)
讓學(xué)生獨(dú)立總結(jié)本節(jié)內(nèi)容,敘述本節(jié)的概念和結(jié)論.
八、課后作業(yè)
1.教材P19第7題;
2.畫圖說明在同一平面內(nèi)三條直線的位置關(guān)系及交點(diǎn)情況.
[補(bǔ)充內(nèi)容]
1.試說明,如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.
2.在同一平面內(nèi),兩條直線的位置關(guān)系僅有兩種:相交或平行.但現(xiàn)實(shí)空間是立體的,
試想一想在空間中,兩條直線會有哪些位置關(guān)系呢?(用長方體來說明)
5.2.2 直線平行的條件 (第2課時)
一.教學(xué)目標(biāo)
(1) 使學(xué)生進(jìn)一步理解并掌握判定兩條直線平行的方法;
(2) 了解簡單的邏輯推理過程.
二.教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):判定兩條直線平行方法的應(yīng)用;
難點(diǎn):簡單的邏輯推理過程.
三.教學(xué)過程
復(fù)習(xí)提問:
1.判定兩條直線平行的方法有哪些?
2.如圖(1)
(1) 如果∠1=∠4,根據(jù)_________________,可得AB∥CD;
(2) 如果∠1=∠2,根據(jù)_________________,可得AB∥CD;
(3) 如果∠1+∠3=1800,根據(jù)______________,可得AB∥CD .
3.如圖(2)
(1) 如果∠1=∠D,那么______∥________;
(2) 如果∠1=∠B,那么______∥________;
(3) 如果∠A+∠B=1800,那么______∥________;
(4) 如果∠A+∠D=1800,那么______∥________;
新課:
例1 在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行嗎?為什么?
分析:垂直總與直角聯(lián)系在一起,我們學(xué)過哪些判斷兩條直線平行的方法?
答:這兩條直線平行.
如圖所示
理由如下: ∵b⊥a,c⊥a
∴∠1=∠2=900(垂直定義)
∴b∥c(同位角相等,兩直線平行)
思考:
這是小明同學(xué)自己制作的英語抄寫紙的一部分,其中的橫格線互相平行嗎?你有多少種判別方法?
例2 如圖所示,∠1=∠2,∠BAC=200,∠ACF=800.
(1) 求∠2的度數(shù);
(2) FC與AD平行嗎?為什么?
鞏固練習(xí)
1. 教科書19頁練習(xí)
2. 如圖所示,如果∠1=470,∠2=1330,∠D=470,那么BC與DE平行嗎?AB與CD平行嗎?
3. 如圖所示,已知∠D=∠A,∠B=∠FCB,試問ED與CF平行嗎?
4. 如圖,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出圖中互相平行的直線.
作業(yè):教科書19頁習(xí)題5.2第7、8題
5.2.2直線平行的條件(一)
[教學(xué)目標(biāo)]
3. 借助用直尺和三角板畫平行線的過程,,得出直線平行的條件.
4. 會用直線平行的條件來判定直線平行.
5. 激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
[教學(xué)重點(diǎn)與難點(diǎn)]
重點(diǎn): 理解直線平行的條件.
難點(diǎn): 直線平行的條件的應(yīng)用
[教學(xué)設(shè)計]提問
復(fù)習(xí)題:
1.如圖,已知四條直線AB、AC、DE、FG
(1)∠1與∠2是直線_____和直線____被直線________所截而成的________角.
(2) ∠3與∠2是直線_____和直線____被直線________所截而成的________角.
(3) ∠5與∠6是直線_____和直線____被直線________所截而成的________角.
(4) ∠4與∠7是直線_____和直線____被直線________所截而成的________角.
(5) ∠8與∠2是直線_____和直線____被直線________所截而成的________角.
2.下面說法中正確的是 ( ).
(1) 在同一平面內(nèi),兩條直線的位置關(guān)系有相交、平行、垂直三種
(2) 在同一平面內(nèi), 不垂直的兩條直線必平行
(3) 在同一平面內(nèi), 不平行的兩條直線必垂直
(4) 在同一平面內(nèi),不相交的兩條直線一定不垂直
3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.
導(dǎo)言:
上節(jié)課我們學(xué)習(xí)了平行線的意義, 在同一平面內(nèi),兩條直線的位置關(guān)系,以及平行公理,
在此基礎(chǔ)上,我們再來研究直線平行的條件.
新課:
直線平行的條件
演示用直尺和三角板畫平行線的過程,
如果∠4+∠2=180°, a∥ b嗎?
三種方法可以簡單地說成:
例題 已知:如圖,直線AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,試說明CD ∥EF.
解:因?yàn)?ang;1=∠2,
所以 AB ∥CD.
又因?yàn)?∠3+∠1=180°,
所以 AB ∥ EF.
從而 CD ∥EF (為什么?).
課堂練習(xí):
1.下列判斷正確的是 ( ).
A. 因?yàn)?ang;1和∠2是同旁內(nèi)角,所以∠1+∠2=180°
B. 因?yàn)?ang;1和∠2是內(nèi)錯角,所以∠1=∠2
C. 因?yàn)?ang;1和∠2是同位角,所以∠1=∠2
D. 因?yàn)?ang;1和∠2是補(bǔ)角,所以∠1+∠2=180°
2.如圖:(1) 已知∠1=65°, ∠2=65°,那么DE與 BC平行嗎?為什么?
(2)如果∠1=65°, ∠3=115°,那么AB與DF平行嗎?
為什么?
(3) )如果∠4=60°, ∠2=65°,那么DE與BC平行嗎?
為什么?
3.
4.如圖所示:
(1)如果已知∠1=∠3,則可判定AB∥______,其理由是__________________;
(2)如果已知∠4+∠5=180°,則可判定___________∥______,其理由是__________________;
(3)如果已知∠1+∠2=180°,則可判定___________∥______,其理由是__________________;
(4)如果已知∠5+∠2=180°那么根據(jù)對頂角相等有∠2=__,
因此可知∠4+∠5= ____,所以可確定 ___________∥______,其理由是__________________;
(5)如果已知∠1=∠6,則可判定_____∥______,其理由是__________________.
第4題圖 第5題圖
5.如圖,(1)如果∠1=________,那么DE∥ AC;
(2) 如果∠1=________,那么EF∥ BC;
(3)如果∠FED+ ∠________=180°,那么AC∥ED;
(4) 如果∠2+ ∠________=180°,那么AB∥DF.
6.
7.
課后作業(yè):習(xí)題5.2 第1,2,4題.
補(bǔ)充練習(xí):
已知:如圖,AB ∥CD,EF分別交 AB、CD
于 E、F,EG平分∠ AEF ,
FH平分∠ EFD EG與 FH平行嗎?為什么?
初中數(shù)學(xué)新課程教學(xué)
一、使課題的引入更具有趣味性
人的感情是非常豐富的,風(fēng)趣幽默的話能給人留下深刻的印象,也會使得課堂充滿生機(jī)。比如,教授整式加減的時候,教師可先給學(xué)生講個笑話:“王阿姨家養(yǎng)了3只羊和9頭豬,小軍卻數(shù)出12頭豬,同學(xué)們知道是什么原因嗎?”聽完后,學(xué)生都會笑著回答:“那是因?yàn)樗蜒蚪o數(shù)上了。”學(xué)生為什么會笑呢?那是因?yàn)樗麄冎镭i與羊是不同種類,不能這樣將數(shù)量相加。此時,教師可以導(dǎo)入授課的重點(diǎn),即合并同類項(xiàng)就是不同類的事物不能合并。這樣的教學(xué)方法不但活躍了課堂氣氛,還加深了學(xué)生對于同類項(xiàng)的理解,可謂一舉兩得。
二、建立平等的師生關(guān)系
古人曰:“親其師,信其道。”這就是要求教師能夠摒棄師道為大的舊俗,和學(xué)生建立一種人格上的平等,走到學(xué)生的身旁,走進(jìn)學(xué)生的心里,和學(xué)生進(jìn)行平等的交流;和學(xué)生一起探索、討論,激勵學(xué)生積極思考、選擇、提問,積極參與他們的自由交流;和學(xué)生建立一種友好的關(guān)系,讓學(xué)生不再抗拒教師。如果建立起這種新型的師生關(guān)系,課堂教學(xué)就能在一種輕松、和諧的氛圍內(nèi)進(jìn)行與完成。要想在師生之間建立起互動性的關(guān)系,教師不僅要在備課的時候,考慮學(xué)生的生活實(shí)際與知識狀況,還要考慮怎樣使學(xué)生通過自己的學(xué)習(xí)獲得相關(guān)的技能。此外,教師還應(yīng)在課堂上尊重每一位學(xué)生,讓學(xué)生能夠主動探索、大膽提問,鼓勵學(xué)生主動探討解決問題的辦法,并在學(xué)生需要的時候參加學(xué)生的學(xué)習(xí)活動,給予學(xué)生必要的指導(dǎo),與學(xué)生成為學(xué)習(xí)伙伴、知心朋友。
三、設(shè)置問題的層次性
數(shù)學(xué)教學(xué)的核心就是問題。教師在設(shè)置問題時不僅要考慮到學(xué)生的認(rèn)知水平,還要考慮知識本身所具有的特征。如果設(shè)置的問題過大,會使得學(xué)生思考邊際過大,甚至?xí)箤W(xué)習(xí)困難的學(xué)生缺乏信心。但如果設(shè)置的問題過小,又會缺乏思考的價值,不利于學(xué)生的全面發(fā)展。所以,教師在備課的時候要想好該如何設(shè)置難度適宜的問題,讓大部分學(xué)生在層層深入的問題里清楚了解知識點(diǎn)。比如,在講授根與系數(shù)關(guān)系的時候,我首先給出4個方程式:①x2-5x-6=0;②x2+3x+2=0;③x2-x-6=0;④x2-3x+7=0。然后,我要求學(xué)生分別求出a、b、c的值,并解方程求出每個方程式的兩根之和與積。學(xué)生很快就發(fā)現(xiàn)方程式④不能求出答案。這是什么原因造成呢?因?yàn)椤?lt;0,所以方程無解。然后,我讓學(xué)生觀察前3個方程式兩根之和、兩根之積和原來方程式a、b、c的關(guān)系。學(xué)生很容易就發(fā)現(xiàn):當(dāng)二次系數(shù)a=1時,兩根之和恰好是一次系數(shù)b的相反數(shù),而兩根之積也為常數(shù)項(xiàng)。此時,我再給出方程式2x2-6x-7=0,學(xué)生就懂得按照等式的基本性質(zhì),將二次系數(shù)變成1再進(jìn)行解答,這樣就能將特殊轉(zhuǎn)化成一般。
四、訓(xùn)練多樣性的思維模式
1.訓(xùn)練思維速度。這主要是在課堂上進(jìn)行訓(xùn)練的。因此,教師應(yīng)合理安排課堂的教學(xué)內(nèi)容,運(yùn)用形象生動的教學(xué)模式來訓(xùn)練學(xué)生的思維速度,從而提高數(shù)學(xué)的教學(xué)質(zhì)量。例如,在講授新課后,教師要安排教材中的練習(xí)作為檢查的速算題。教師也可精心編寫概念性強(qiáng)、靈活性高、覆蓋面廣的選擇、判斷、簡答題等,開展專項(xiàng)訓(xùn)練,從而提高學(xué)生快速答題的能力。
2.訓(xùn)練思維質(zhì)量。教師可充分組織學(xué)生對于某些解題思路、解題方法的特點(diǎn)等展開討論。這樣有助于學(xué)生主動積極思考,從而能有效提高其分析、解決問題的能力。
3.訓(xùn)練逆向思維。啟迪學(xué)生從相反的角度思考問題,培養(yǎng)起逆向思考問題的習(xí)慣,這樣有助于拓展學(xué)生的思路,找到解決問題的方法,有效培養(yǎng)學(xué)生的思維能力。
4.訓(xùn)練發(fā)散思維。這可以充分調(diào)動起學(xué)生的求知欲與好奇心,讓學(xué)生自己進(jìn)行獨(dú)立的思考,不斷探索新的知識,并盡自己最大的能力去解決問題。在課堂教學(xué)中,教師要以打破問題為起點(diǎn),講結(jié)論作為重點(diǎn)的封閉式教學(xué),重新構(gòu)造出一種以探究為關(guān)鍵的開放式教學(xué)模式。
五、結(jié)題
總而言之,只要教師努力實(shí)踐,認(rèn)真思考,在數(shù)學(xué)教學(xué)中不斷前行,堅持新課程的理念,并以此引導(dǎo)課堂教學(xué),借助各種教學(xué)手段,就能使學(xué)生積極參與教學(xué)活動,讓學(xué)生體會到學(xué)習(xí)數(shù)學(xué)的樂趣,從而大大增加學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性與主動性。
作者:李全元 單位:甘肅省張掖市第五中學(xué)
看了“七年級數(shù)學(xué)下冊教學(xué)設(shè)計”的人還看了:
1.新人教版七年級數(shù)學(xué)下冊教案免費(fèi)下載
2.七年級數(shù)學(xué)上教學(xué)設(shè)計