不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數(shù)學 > 高考數(shù)學攻略:五大主要解題思路10大解法

高考數(shù)學攻略:五大主要解題思路10大解法

時間: 惠敏1218 分享

高考數(shù)學攻略:五大主要解題思路10大解法

  導讀:教書育人楷模,更好地指導自己的學習,讓自己不斷成長。讓我們一起到學習啦一起學習吧!下面學習啦網(wǎng)的小編給你們帶來了高三數(shù)學學習方法文章《高考數(shù)學攻略:五大主要解題思路10大解法》供考生們參考。

  高考數(shù)學選擇題十大解法

  高考數(shù)學選擇題從難度上講是比其他類型題目降低了,但知識覆蓋面廣,要求解題熟練、準確、靈活、快速。選擇題的解題思想,淵源于選擇題與常規(guī)題的聯(lián)系和區(qū)別。它在一定程度上還保留著常規(guī)題的某些痕跡。而另一方面,選擇題在結構上具有自己的特點,即至少有一個答案(若一元選擇題則只有一個答案)是正確的或合適的。因此可充分利用題目提供的信息,排除迷惑支的干擾,正確、合理、迅速地從選擇支中選出正確支。選擇題中的錯誤支具有兩重性,既有干擾的一面,也有可利用的一面,只有通過認真的觀察、分析和思考才能揭露其潛在的暗示作用,從而從反面提供信息,迅速作出判斷。

  由于我多年從事高考試題的研究,尤其對選擇題我有自己的一套考試技術,我知道無論是什么科目的選擇題,都有它固有的漏洞和具體的解決辦法,我把它總結為:6大漏洞、8大法則。“6大漏洞”是指:有且只有一個正確答案;不問過程只問結果;題目有暗示;答案有暗示;錯誤答案有嚴格標準;正確答案有嚴格標準;“8大原則”是指:選項唯一原則;范圍最大原則;定量轉定性原則;選項對比原則;題目暗示原則;選擇項暗示原則;客觀接受原則;語言的精確度原則。經(jīng)過我的培訓,很多的學生的選擇題甚至1分都不丟。

  下面是一些實例:

  1.特值檢驗法:對于具有一般性的數(shù)學問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。

  例:△ABC的三個頂點在橢圓4x2+5y2=6上,其中A、B兩點關于原點O對稱,設直線AC的斜率k1,直線BC的斜率k2,則k1k2的值為

  A.-5/4B.-4/5C.4/5D.2√5/5

  解析:因為要求k1k2的值,由題干暗示可知道k1k2的值為定值。題中沒有給定A、B、C三點的具體位置,因為是選擇題,我們沒有必要去求解,通過簡單的畫圖,就可取最容易計算的值,不妨令A、B分別為橢圓的長軸上的兩個頂點,C為橢圓的短軸上的一個頂點,這樣直接確認交點,可將問題簡單化,由此可得,故選B。

  2.極端性原則:將所要研究的問題向極端狀態(tài)進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數(shù)應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,一但采用極端性去分析,那么就能瞬間解決問題。

  3.剔除法:利用已知條件和選擇支所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數(shù)值范圍時,取特殊點代入驗證即可排除。

  4.數(shù)形結合法:由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經(jīng)過簡單的推理或計算,從而得出答案的方法。數(shù)形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。

  5.遞推歸納法:通過題目條件進行推理,尋找規(guī)律,從而歸納出正確答案的方法。

  6.順推破解法:利用數(shù)學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。

  例:銀行計劃將某資金給項目M和N投資一年,其中40%的資金給項目M,60%的資金給項目N,項目M能獲得10%的年利潤,項目N能獲得35%的年利潤,年終銀行必須回籠資金,同時按一定的回扣率支付給儲戶.為了使銀行年利潤不小于給M、N總投資的10%而不大于總投資的15%,則給儲戶回扣率最小值為()

  A.5%B.10%C.15%D.20%

  解析:設共有資金為α,儲戶回扣率χ,由題意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α

  解出0.1≤χ≤0.15,故應選B.

  7.逆推驗證法(代答案入題干驗證法):將選擇支代入題干進行驗證,從而否定錯誤選擇支而得出正確選擇支的方法。

  例:設集合M和N都是正整數(shù)集合N*,映射f:M→把集合M中的元素n映射到集合N中的元素2n+n,則在映射f下,象37的原象是()

  A.3B.4C.5D.6

  8.正難則反法:從題的正面解決比較難時,可從選擇支出發(fā)逐步逆推找出符合條件的結論,或從反面出發(fā)得出結論。

  9.特征分析法:對題設和選擇支的特點進行分析,發(fā)現(xiàn)規(guī)律,歸納得出正確判斷的方法。

  例:256-1可能被120和130之間的兩個數(shù)所整除,這兩個數(shù)是:

  A.123,125B.125,127C.127,129D.125,127

  解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故選C。

  10.估值選擇法:有些問題,由于題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。

  總結:高考中的選擇題一般是容易題或中檔題,個別題屬于較難題,當中的大多數(shù)題的解答可用特殊的方法快速選擇。例如:估值選擇法、特值檢驗法、順推破解法、數(shù)形結合法、特征分析法、逆推驗證法等都是常用的解法.解題時還應特別注意:選擇題的四個選擇支中有且僅有一個是正確的,因而在求解時對照選擇支就顯得非常重要,它是快速選擇、正確作答的基本前提。

  高考數(shù)學復習:五大主要解題思路

  高考數(shù)學解題思想一:函數(shù)與方程思想

  函數(shù)思想是指運用運動變化的觀點,分析和研究數(shù)學中的數(shù)量關系,通過建立函數(shù)關系(或構造函數(shù))運用函數(shù)的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數(shù)量關系入手,運用數(shù)學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉化思想我們還可進行函數(shù)與方程間的相互轉化。

  高考數(shù)學解題思想二:數(shù)形結合思想

  中學數(shù)學研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個聯(lián)系稱之為數(shù)形結合或形數(shù)結合。它既是尋找問題解決切入點的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數(shù)學題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。

  高考數(shù)學解題思想三:特殊與一般的思想

  用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點,我們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。

  高考數(shù)學解題思想四:極限思想解題步驟

  極限思想解決問題的一般步驟為:(1)對于所求的未知量,先設法構思一個與它有關的變量;(2)確認這變量通過無限過程的結果就是所求的未知量;(3)構造函數(shù)(數(shù)列)并利用極限計算法則得出結果或利用圖形的極限位置直接計算結果。

  高考數(shù)學解題思想五:分類討論思想

  我們常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學概念本身具有多種情形,數(shù)學運算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時,要做到標準統(tǒng)一,不重不漏。

4507174