不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)必修2目錄_高一數(shù)學(xué)必修二課本目錄

時間: 文娟843 分享

  數(shù)學(xué)必修2課程是高一學(xué)生學(xué)習(xí)的重要內(nèi)容。同學(xué)們?nèi)粝胫辣匦?課本目錄,下面學(xué)習(xí)啦小編為大家整理了高一數(shù)學(xué)必修2目錄,希望對大家有所幫助!

  高一數(shù)學(xué)必修2目錄

  第一章 空間幾何體

  1.1 空間幾何體的結(jié)構(gòu)

  1.2 空間幾何體的三視圖和直觀圖

  閱讀與思考 畫法幾何與蒙日

  1.3 空間幾何體的表面積與體積

  探究與發(fā)現(xiàn) 祖暅原理與柱體、椎體、球體的體積

  實習(xí)作業(yè)

  小結(jié)

  復(fù)習(xí)參考題

  第二章 點、直線、平面之間的位置關(guān)系

  2.1 空間點、直線、平面之間的位置關(guān)系

  2.2 直線、平面平行的判定及其性質(zhì)

  2.3 直線、平面垂直的判定及其性質(zhì)

  閱讀與思考 歐幾里得《原本》與公理化方法

  小結(jié)

  復(fù)習(xí)參考題

  第三章 直線與方程

  3.1 直線的傾斜角與斜率

  探究與發(fā)現(xiàn) 魔術(shù)師的地毯

  3.2 直線的方程

  3.3 直線的交點坐標(biāo)與距離公式

  閱讀與思考 笛卡兒與解析幾何

  小結(jié)

  復(fù)習(xí)參考題

  第四章 圓與方程

  4.1 圓的方程

  閱讀與思考 坐標(biāo)法與機器證明

  4.2 直線、圓的位置關(guān)系

  4.3 空間直角坐標(biāo)系

  信息技術(shù)應(yīng)用 用《幾何畫板》探究點的軌跡:圓

  小結(jié)

  復(fù)習(xí)參考題

  高一數(shù)學(xué)必修2知識點

  1、柱、錐、臺、球的結(jié)構(gòu)特征

  (1)棱柱:

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

  高一數(shù)學(xué)知識點口訣

  一、《集合與函數(shù)》

  內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

  復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。

  指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

  函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù);

  正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。

  兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;

  求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

  冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

  奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。

  二、《三角函數(shù)》

  三角函數(shù)是函數(shù),象限符號坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。

  同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

  中心記上數(shù)字1,連結(jié)頂點三角形;向下三角平方和,倒數(shù)關(guān)系是對角,

  頂點任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負化正后大化小,

  變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

  將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  1加余弦想余弦,1 減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。


猜你感興趣:

1.高一數(shù)學(xué)必修二知識點總結(jié)

2.高一數(shù)學(xué)必修2各章知識點總結(jié)

3.高一數(shù)學(xué)必修2課本內(nèi)容

4.高中數(shù)學(xué)必修5教材目錄

5.高一必修2物理課本目錄

6.高一數(shù)學(xué)必修1目錄

1431863