小學(xué)奧數(shù)知識點(diǎn)總結(jié):二進(jìn)制原理及其應(yīng)用及數(shù)列求和
小學(xué)奧數(shù)知識點(diǎn)總結(jié):二進(jìn)制原理及其應(yīng)用及數(shù)列求和
小升初是孩子最重要的起步方向,我們需要關(guān)注怎樣的信息才能對孩子的未來有幫助呢?學(xué)習(xí)啦網(wǎng)小編告訴大家!
小學(xué)奧數(shù)知識點(diǎn)總結(jié):數(shù)列求和
等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;
項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;
通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路:等差數(shù)列中涉及五個(gè)量:a1,an,d,n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公
式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式:通項(xiàng)公式:an=a1+(n-1)d;
通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)公差;
數(shù)列和公式:sn,=(a1+an)n2;
數(shù)列和=(首項(xiàng)+末項(xiàng))項(xiàng)數(shù)2;
項(xiàng)數(shù)公式:n=(an+a1)d+1;
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))公差+1;
公差公式:d=(an-a1))(n-1);
公差=(末項(xiàng)-首項(xiàng))(項(xiàng)數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式。
小學(xué)奧數(shù)知識點(diǎn)總結(jié):二進(jìn)制原理及其應(yīng)用
十進(jìn)制:用0~9十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。
=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+……+A3102+A2101+A1100
注意:N0=1;N1=N(其中N是任意自然數(shù))
二進(jìn)制:用0~1兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。
(2)=An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7+……+A322+A221+A120
注意:An不是0就是1。
十進(jìn)制化成二進(jìn)制:
?、俑鶕?jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。
?、谙日页霾淮笥谠摂?shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點(diǎn)即可寫出。