不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數(shù)學 >

高一數(shù)學知識點匯總大全

時間: 維維20 分享

學習任何一門知識點都要學會對該知識點進行總結(jié),這樣可以檢查學生對知識的真正掌握程度以及方便學生日后的復習。下面給大家?guī)硪恍└咭粩?shù)學知識點,希望對大家有所幫助。

高一數(shù)學知識點匯總大全

目錄

高一數(shù)學知識點匯總

高一數(shù)學知識點

高一數(shù)學知識點大全

高一數(shù)學知識點匯總合集

高一數(shù)學知識點匯總

函數(shù)的有關(guān)概念

1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

注意:

1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

求函數(shù)的定義域時列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數(shù)為零底不可以等于零,

(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

u 相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點必須同時具備)

2.值域 : 先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

3. 函數(shù)圖象知識歸納

(1)定義:在平面直角坐標系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上 .

(2) 畫法

A、 描點法:

B、 圖象變換法

常用變換方法有三種

1) 平移變換

2) 伸縮變換

3) 對稱變換

4.區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

(3)區(qū)間的數(shù)軸表示.

5.映射

一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯

通過上面的高一數(shù)學必修1知識點總結(jié),同學們已經(jīng)梳理了一遍高一數(shù)學必修1的知識點,也加深了對該知識的更深了解,相信同學們一定能學好這部分知識點,也希望同學們以后的學習中多做總結(jié)。

返回目錄

高一數(shù)學知識點

集合

(1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n-1;非空真子集的數(shù)為2^n-2;

(2)注意:討論的時候不要遺忘了的情況。

(3)

第二部分函數(shù)與導數(shù)

1.映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。

2.函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;

⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導數(shù)法

3.復合函數(shù)的有關(guān)問題

(1)復合函數(shù)定義域求法:

①若f(x)的定義域為〔a,b〕,則復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。

(2)復合函數(shù)單調(diào)性的判定:

①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

②分別研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

③根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

4.分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

5.函數(shù)的奇偶性

⑴函數(shù)的定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件;

⑵是奇函數(shù);

⑶是偶函數(shù);

⑷奇函數(shù)在原點有定義,則;

⑸在關(guān)于原點對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

(6)若所給函數(shù)的解析式較為復雜,應(yīng)先等價變形,再判斷其奇偶性;

返回目錄

高一數(shù)學知識點大全

1.等差數(shù)列的定義

如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

2.等差數(shù)列的通項公式

若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

3.等差中項

如果A=(a+b)/2,那么A叫做a與b的等差中項.

4.等差數(shù)列的常用性質(zhì)

(1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

(2)若{an}為等差數(shù)列,且m+n=p+q,

則am+an=ap+aq(m,n,p,q∈N_).

(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

(5)S2n-1=(2n-1)an.

(6)若n為偶數(shù),則S偶-S奇=nd/2;

若n為奇數(shù),則S奇-S偶=a中(中間項).

注意:

一個推導

利用倒序相加法推導等差數(shù)列的前n項和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

兩個技巧

已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.

(1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

(2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進行對稱設(shè)元.

四種方法

等差數(shù)列的判斷方法

(1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

(2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通項公式法:驗證an=pn+q;

(4)前n項和公式法:驗證Sn=An2+Bn.

注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

返回目錄

高一數(shù)學知識點匯總合集

兩個復數(shù)相等的定義:

如果兩個復數(shù)的實部和虛部分別相等,那么我們就說這兩個復數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

a=c,b=d。特殊地,a,b∈R時,a+bi=0

a=0,b=0.

復數(shù)相等的充要條件,提供了將復數(shù)問題化歸為實數(shù)問題解決的途徑。

復數(shù)相等特別提醒:

一般地,兩個復數(shù)只能說相等或不相等,而不能比較大小。如果兩個復數(shù)都是實數(shù),就可以比較大小,也只有當兩個復數(shù)全是實數(shù)時才能比較大小。

解復數(shù)相等問題的方法步驟:

(1)把給的復數(shù)化成復數(shù)的標準形式;

(2)根據(jù)復數(shù)相等的充要條件解之。

高中數(shù)學知識點總結(jié)理科歸納5

定義:

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域。

性質(zhì):

對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

排除了為0這種可能,即對于x

排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

返回目錄

高一數(shù)學知識點匯總大全相關(guān)文章:

高一數(shù)學知識點全面總結(jié)

高一數(shù)學集合知識點匯總

高一數(shù)學知識點總結(jié)歸納

高一數(shù)學知識點總結(jié)(考前必看)

高一數(shù)學必修一知識點匯總

高一數(shù)學知識點總結(jié)(人教版)

高一數(shù)學常考知識點總結(jié)

高一數(shù)學知識點總結(jié)

高一數(shù)學知識點總結(jié)期末必備

774989