初三數(shù)學重要的知識點
各個科目都有自己的學習方法,但其實都是萬變不離其中的,基本離不開背、記,練,數(shù)學作為最燒腦的科目之一,也是一樣的。下面是小編給大家整理的初三數(shù)學知識點,希望對大家有所幫助。
初三數(shù)學知識點歸納
點,線,面:
①圖形是由點,線,面構(gòu)成的。
②面與面相交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與折疊:
①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。
②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧,扇形:
①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
角
線:
①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經(jīng)過兩點有且只有一條直線。
比較長短:
①兩點之間的所有連線中,線段最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。
②一條射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:
①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點叫做垂足。
③平面內(nèi),過一點有且只有一條直線與已知直線垂直。
2、相交線與平行線
角:
①如果兩個角的和是直角,那么稱和兩個角互為余角;如果兩個角的和是平角,那么稱這兩個角互為補角。
②同角或等角的余角/補角相等。
③對頂角相等。
④同位角相等/內(nèi)錯角相等/同旁內(nèi)角互補,兩直線平行,反之亦然。
初三數(shù)學上冊知識點歸納
二元一次方程組
1、定義:含有兩個未知數(shù),并且未知項的次數(shù)是1的整式方程叫做二元一次方程。
2、二元一次方程組的解法
(1)代入法
由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。
(2)因式分解法
在二元二次方程組中,至少有一個方程可以分解時,可采用因式分解法通過消元降次來解。
(3)配方法
將一個式子,或一個式子的某一部分通過恒等變形化為完全平方式或幾個完全平方式的和。
(4)韋達定理法
通過韋達定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。
(5)消常數(shù)項法
當方程組的兩個方程都缺一次項時,可用消去常數(shù)項的方法解。
解一元二次方程
解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。
1、直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).
直接開平方法就是平方的逆運算.通常用根號表示其運算結(jié)果.
2、配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。
(1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
(2)系數(shù)化1:將二次項系數(shù)化為1
(3)移項:將常數(shù)項移到等號右側(cè)
(4)配方:等號左右兩邊同時加上一次項系數(shù)一半的平方
(5)變形:將等號左邊的代數(shù)式寫成完全平方形式
(6)開方:左右同時開平方
(7)求解:整理即可得到原方程的根
初三數(shù)學知識點整理
整式的除法
(1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。
(2)任何不等于零的數(shù)的零次冪為1。
分數(shù)的性質(zhì)
1.分數(shù)中間的一條橫線叫做分數(shù)線,分數(shù)線上面的數(shù)叫做分子,分數(shù)線下面的數(shù)叫做分母。讀作幾分之幾。
2.分數(shù)可以表述成一個除法算式:如二分之一等于1除以2。其中,1分子等于被除數(shù),-分數(shù)線等于除號,2分母等于除數(shù),而0.5分數(shù)值則等于商。
3.分數(shù)還可以表述為一個比,例如;二分之一等于1:2,其中1分子等于前項,—分數(shù)線等于比號,2分母等于后項,而0.5分數(shù)值則等于比值。
4.當分子與分母同時乘或除以相同的數(shù)(0除外),分數(shù)值不會變化。因此,每一個分數(shù)都有無限個與其相等的分數(shù)。利用此性質(zhì),可進行約分與通分。
5.一個分數(shù)不是有限小數(shù),就是無限循環(huán)小數(shù),像π等這樣的無限不循環(huán)小數(shù),是不可能用分數(shù)代替的。
正負數(shù)加減法則順口溜
正正相加,和為正。
負負相加,和為負。
正減負來,得為正。
負減正來,得為負。
其余沒說,看大小。
誰大就往,誰邊倒。
初三數(shù)學重要的知識點相關(guān)文章: