初中數(shù)學(xué)的知識點總結(jié)歸納
數(shù)學(xué)透過抽象化和邏輯推理的使用,由計數(shù)、計算、量度和對物體形狀及運動的觀察而產(chǎn)生。這次小編給大家整理了初中數(shù)學(xué)的知識點總結(jié)歸納,供大家閱讀參考。
初中數(shù)學(xué)的知識點總結(jié)歸納
圖形的認識
1、點,線,面
點,線,面:
①圖形是由點,線,面構(gòu)成的。
②面與面相交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與折疊
①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。
②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形
①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
線
①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經(jīng)過兩點有且只有一條直線。
比較長短
①兩點之間的所有連線中,線段最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。
角的比較
①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。
②一條射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行
①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點叫做垂足。
③平面內(nèi),過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理
性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;
角平分線:把一個角平分的射線叫該角的角平分線;
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點;
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點在該角的角平分線上;
正方形:一組鄰邊相等的矩形是正方形;
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)。
判定
1、對角線相等的菱形
2、鄰邊相等的矩形
基本方法
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等。
5、待定系數(shù)法
在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴謹。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。
幾何變換包括
(1)平移;
(2)旋轉(zhuǎn);
(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復(fù)蓋面廣,評卷準確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。
學(xué)好數(shù)學(xué)的方法
1、上課前要調(diào)整好心態(tài),一定不能想,哎,又是數(shù)學(xué)課,上課時聽講心情就很不好,這樣當(dāng)然學(xué)不好!
2、上課時一定要認真聽講,作到耳到、眼到、手到!這個很重要,一定要學(xué)會做筆記,上課時如果老師講的快,一定靜下心來聽,不要記,下課時再整理到筆記本上!保持高效率!
3、俗話說興趣是最好的老師,當(dāng)別人談?wù)撟钣憛挼恼n時,你要告訴自己,我喜歡數(shù)學(xué)!
4、保證遇到的每一題都要弄會,弄懂,這個很重要!不會就問,不要不好意思,要學(xué)會舉一反三!也就是要靈活運用!作的題不要求多,但要精!
5、要有錯題集,把平時遇到的好題記下來,錯題記下來,并要多看,多思考,不能在同一個地方絆倒!!
總之,學(xué)習(xí)數(shù)學(xué),不要怕難,不要怕累,不要怕問!
如何學(xué)好數(shù)學(xué)
首先你要有一個好的態(tài)度,有些人學(xué)習(xí)數(shù)學(xué),可能有的階段會喜歡學(xué)習(xí),但是某一階段,對數(shù)學(xué)就沒有什么興趣了,可能每個人都會有這樣一個階段,但是如果發(fā)現(xiàn)自己不喜歡學(xué)習(xí)數(shù)學(xué)了,一定要克制自己,在學(xué)習(xí)數(shù)學(xué)上,保持一個良好的學(xué)習(xí)態(tài)度,這是你學(xué)好數(shù)學(xué)的第一步。
充分的利用好上課的時間,上課時間你所掌握的知識,會比你在課下學(xué)很長時間都有用,所以珍惜課堂老師所講的內(nèi)容,老師的某些話對我們以后做數(shù)學(xué)題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時候,可能會走很多彎路,做題的效率也會降低,一旦有這樣的情況,可能你就會不喜歡數(shù)學(xué)了。
學(xué)習(xí)最重要的是思考,會思考數(shù)學(xué)才能學(xué)好,數(shù)學(xué)中的題都是需要我們?nèi)ヅe一反三的,沒做一道題,都要思考一下,圍繞著這道題的知識點,還會有什么樣的題型出現(xiàn),哪怕是遇到不會的題,也要勤加的思考,如果你把知識點自認為學(xué)習(xí)透徹,那么就用做題檢驗吧,數(shù)學(xué)中多做題是必須的,成績都是用題堆積出來的,很少會有人不做題數(shù)學(xué)成績很高的。
初中數(shù)學(xué)的知識點總結(jié)歸納相關(guān)文章:
★ 初中數(shù)學(xué)重點知識點的歸納總結(jié)
★ 初中部數(shù)學(xué)學(xué)習(xí)方法總結(jié)